PHẦN ĐẠI SỐ - VỞ BÀI TẬP TOÁN 9 TẬP 2

Bài 27 trang 29 Vở bài tập toán 9 tập 2

Đề bài

Nhà Lan có một mảnh vườn trồng rau cải bắp. Vườn được đánh thành nhiều luống, mỗi luống trồng cùng một số rau cải bắp. Lan tính rằng: nếu tăng thêm 8 luống rau nhưng mỗi luống trồng ít đi 3 cây thì số cây rau toàn vườn ít đi 54 cây; Nếu giảm đi 4 luống, nhưng mỗi luống trồng tăng thêm 2 cây thì số rau toàn vườn sẽ tăng thêm 32 cây. Hỏi vườn nhà Lan trồng bao nhiêu câu rau cải bắp ?

Phương pháp giải - Xem chi tiết

Bước 1. Lập hệ phương trình:

- Chọn các ẩn số và đặt điều kiện thích hợp cho các ẩn số;

- Biểu diễn các đại lượng chưa biết theo các ẩn và các đại lượng đã biết;

-Lập hệ phương trình biểu thị mối quan hệ giữa các đại lượng

Bước 2. Giải hệ phương trình vừa thu được.

Bước 3. Kết luận

-Kiểm tra xem trong các nghiệm của hệ phương trình, nghiệm nào thỏa mãn điều kiện của ẩn.

- Kết luận bài toán.

Lời giải chi tiết

Gọi \(x\) là số luống và \(y\) là số cây cải bắp trên mỗi luống. Điều kiện: \(x > 4;y > 3;x,y \in N\).

Khi đó số cây cải bắp ban đầu có trong vườn là \(N = xy\) (cây) 

Nếu tăng thêm 8 luống rau, nhưng mỗi luống trồng ít đi 3 cây thì số cây rau trong vườn sẽ là \(\left( {x + 8} \right)\left( {y - 3} \right)\) cây, lúc này số cây ít hơn 54 cây so với N. Điều đó được thể hiện bởi phương trình \(\left( {x + 8} \right)\left( {y - 3} \right) + 54 = xy\)

Nếu giảm đi 4 luống rau, nhưng mỗi luống trồng tăng thêm 2 cây thì số cây rau trong vườn sẽ là \(\left( {x - 4} \right)\left( {y + 2} \right)\) cây, lúc này số cây tăng thêm 32 cây so với N. Điều đó được thể hiện bởi phương trình \(\left( {x - 4} \right)\left( {y + 2} \right) - 32 = xy\)

Ta có hệ phương trình \(\left\{ \begin{array}{l}\left( {x + 8} \right)\left( {y - 3} \right) + 54 = xy\\\left( {x - 4} \right)\left( {y + 2} \right) - 32 = xy\end{array} \right.\) , thu gọn là \(\left\{ \begin{array}{l} - 3x + 8y + 30 = 0\\2x - 4y - 40 = 0\end{array} \right.\)

Ta giải hệ phương trình bằng phương pháp cộng đại số:

\(\begin{array}{l}\left\{ \begin{array}{l} - 3x + 8y + 30 = 0\\2x - 4y - 40 = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} - 3x + 8y + 30 = 0\\4x - 8y - 80 = 0\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l} - 3x + 8y + 30 = 0\\x - 50 = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = 50\\ - 3.50 + 8y + 30 = 0\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}x = 50\\8y = 120\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = 50\\y = 15\end{array} \right.\left( {tm} \right)\end{array}\)

Trả lời: Vậy số cây cải trong vườn ban đầu là \(15.50 = 750\) cây.

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved