Bài 1. Phương trình bậc nhất hai ẩn
Bài 2. Hệ hai phương trình bậc nhất hai ẩn
Bài 3. Giải hệ phương trình bằng phương pháp thế
Bài 4. Giải hệ phương trình bằng phương pháp cộng đại số.
Bài 5. Giải bài toán bằng cách lập hệ phương trình
Bài 6.Giải bài toán bằng cách lập hệ phương trình (Tiếp theo)
Ôn tập chương III - Hệ hai phương trình bậc nhất hai ẩn
Đề kiểm 15 phút - Chương 3 - Đại số 9
Đề kiểm tra 45 phút (1 tiết) - Chương 3 - Đại số 9
Bài 1. Hàm số y = ax^2 (a ≠ 0)
Bài 2. Đồ thị của hàm số y = ax^2 (a ≠ 0).
Bài 3. Phương trình bậc hai một ẩn
Bài 4. Công thức nghiệm của phương trình bậc hai
Bài 5. Công thức nghiệm thu gọn
Bài 6. Hệ thức Vi-ét và ứng dụng
Bài 7. Phương trình quy về phương trình bậc hai
Bài 8. Giải bài toán bằng cách lập phương trình
Ôn tập chương IV - Hàm số y = ax^2 (a ≠ 0). Phương trình bậc hai một ẩn
Đề kiểm tra 15 phút - Chương 4 - Đại số 9
Đề kiểm tra 45 phút (1 tiết) - Chương 4 - Đại số 9
Đề bài
Giải bài toán cổ sau:
Quýt, cam mười bảy quả tươi
Đem chia cho một trăm người cùng vui.
Chia ba mỗi quả quýt rồi
Còn cam mỗi quả chia mười vừa xinh.
Trăm người, trăm miếng ngọt lành.
Quýt, cam mỗi loại tính rành là bao ?
Phương pháp giải - Xem chi tiết
B1: Chọn ẩn, đặt điều kiện thích hợp.
Biểu diễn các đại lượng chưa biết theo ẩn và các đại lượng đã biết.
Lập hệ phương trình biểu thị sự tương quan giữa các đại lượng.
B2: Giải hệ phương trình.
B3: Kiểm tra trong các nghiệm tìm được nghiệm nào thỏa mãn điều kiện, nghiệm nào không thỏa mãn, rồi trả lời.
Lời giải chi tiết
Gọi số cam là \(x\), số quýt là \(y\). Điều kiện \(x, y\) là số nguyên dương.
"Quýt ,cam mười bảy quả tươi" nên tổng số quả cam và quýt là \(17\) quả, ta có phương trình: \(x+y=17\) (1)
"Chia ba mỗi quả quýt rồi" nghĩa là mỗi quả quýt chia làm ba miếng nên \(y\) quả quýt thì có số miếng quýt là: \(3y\) (miếng)
"Còn cam mỗi quả chia mười vừa xinh" nghĩa là 1 quả cam chia làm 10 miếng nên \(x\) quả cam thì có số miếng cam là: \(10x\) (miếng)
"Trăm người , trăm miếng ngọt lành" nghĩa là sau khi chia cam và quýt thì ta có tất cả \(100\) miếng, nên ta có phương trình: \(10x+3y=100\) (2)
Từ (1) và (2) ta có hệ phương trình:
\(\left\{\begin{matrix} x + y =17& & \\ 10x + 3 y =100& & \end{matrix}\right.\)\(\Leftrightarrow \left\{\begin{matrix} 3x + 3y =51 & & \\ 10x + 3 y =100& & \end{matrix}\right.\)
\( \Leftrightarrow \left\{ \begin{array}{l}
3x + 3y - \left( {10x + 3y} \right) = 51 - 100\\
10x + 3y = 100
\end{array} \right.\)
\(\Leftrightarrow \left\{\begin{matrix} -7x =-49 & & \\ 10x + 3 y =100& & \end{matrix}\right.\)\(\Leftrightarrow \left\{\begin{matrix} x=7& & \\ 3 y =100 -10x & & \end{matrix}\right.\)
\(\Leftrightarrow \left\{\begin{matrix} x =7& & \\ 3 y =100 - 10.7& & \end{matrix}\right.\)\(\Leftrightarrow \left\{\begin{matrix} x=7& & \\ y =10 & & \end{matrix} (thỏa\ mãn)\right.\)
Vậy có \(10\) quả quýt và \(7\) quả cam.
SOẠN VĂN 9 TẬP 1
Đề thi học kì 1 của các trường có lời giải – Mới nhất
Đề thi vào 10 môn Toán Sơn La
Đề thi vào 10 môn Toán Thái Bình
Đề thi vào 10 môn Văn Cao Bằng