Bài 1. Đại cương về đường thẳng và mặt phẳng
Bài 2. Hai đường thẳng chéo nhau và hai đường thẳng song song
Bài 3. Đường thẳng và mặt phẳng song song
Bài 4. Hai mặt phẳng song song
Bài 5. Phép chiếu song song. Hình biểu diễn của một hình không gian
Ôn tập chương II. Đường thẳng và mặt phẳng trong không gian. Quan hệ song song
Đề bài
Trong mặt phẳng \((\alpha)\) cho tam giác \(ABC\) vuông ở \(B\). Một đoạn thẳng \(AD\) vuông góc với \((\alpha)\) tại \(A\). Chứng minh rằng:
a) \(\widehat {ABD}\) là góc giữa hai mặt phẳng \((ABC)\) và \((DBC)\);
b) Mặt phẳng \((ABD)\) vuông góc với mặt phẳng \((BCD)\);
c) \(HK//BC\) với \(H\) và \(K\) lần lượt là giao điểm của \(DB\) và \(DC\) với mặt phẳng \((P)\) đi qua \(A\) và vuông góc với \(DB\).
Lời giải chi tiết
a) Tam giác \(ABC\) vuông tại \(B\) nên \(AB \, \bot \, BC\) (1)
\(AD\) vuông góc với \((\alpha)\) nên \(AD \, \bot \, BC\) (2)
Từ (1) và (2) suy ra \(BC \, \bot \, (ABD)\) suy ra \(BC \, \bot \, BD\)
\(\left. \matrix{
(ABC) \cap (DBC) = BC \hfill \cr
BD \, \bot \, BC \hfill \cr
AB \,\bot \, BC \hfill \cr} \right\} \)
\(\Rightarrow \) góc giữa hai mặt phẳng \((ABC)\) và \((DBC)\) là góc giữa hai đường thẳng \(BD\) và \(BA\)
Mà \(DA \, \bot \, \left( {ABC} \right) \Rightarrow DA \, \bot \, AB\) \( \Rightarrow \widehat {ABD} < {90^0}\)
Vậy \(\widehat {ABD}\) là góc giữa hai mặt phẳng \((ABC)\) và \((DBC)\).
b)
\(\left. \matrix{
BC\, \bot \, (ABD) \hfill \cr
BC \, \subset \, (BCD) \hfill \cr} \right\}\) \( \Rightarrow (ABD) \, \bot \, (BCD)\)
c) Do \((P)\) đi qua \(A, H, K\) nên mặt phẳng \(\left( P \right) \equiv \left( {AHK} \right)\) đi qua \(A\) và vuông góc với \(DB\) nên \(HK\bot BD\)
Trong \((BCD)\) có: \(HK \, \bot \, BD\) và \(BC \, \bot \, BD\) nên suy ra \(HK \, // \,BC\).
Chú ý:
Từ chứng minh trên ta có thể suy ra cách dựng \((P)\) như sau:
Trong \((DAB),\) qua \(A\) kẻ đường thẳng vuông góc với \(DB\) cắt \(DB\) tại \(H.\)
Trong \((DBC)\), kẻ đường thẳng qua \(H\) và vuông góc với \(DB\) cắt \(DC\) tại \(K.\)
Từ đó ta có \((P)\) chính là \((AHK).\)
Chủ đề 1: Cân bằng hóa học
Bài giảng ôn luyện kiến thức giữa học kì 2 môn Địa lí lớp 11
Unit 3: A Party - Một bữa tiệc
Đề thi học kì 2
Unit 9: Education in the Future
SBT Toán Nâng cao Lớp 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Nâng cao Lớp 11