Bài 3 trang 126 SGK Hình học 11

Đề bài

Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình thang với \(AB\) là đáy lớn. Gọi \(M\) là trung điểm của đoạn \(AB\), \(E\) là giao điểm của hai cạnh của hình thang \(ABCD\) và \(G\) là trọng tâm của tam giác \(ECD\).

a) Chứng minh rằng bốn điểm \(S, E, M, G\) cùng thuộc một mặt phẳng \((α)\) và mặt phẳng này cắt cả hai mặt phẳng \((SAC)\) và \((SBD)\) theo cùng một giao tuyến \(d\).

b) Xác định giao tuyến của hai mặt phẳng \((SAD)\) và \((SBC)\).

c) Lấy một điểm \(K\) trên đoạn \(SE\) và gọi \(C'= SC ∩KB, D'=SD ∩ KA\). Chứng minh rằng hai giao điểm của \(AC'\) và \(BD'\) thuộc đường thẳng \(d\) nói trên.

Phương pháp giải - Xem chi tiết

a) Chứng minh mặt phẳng \((\alpha)\) chính là mặt phẳng \((SEM)\).

b) Tìm hai điểm chung của hai mặt phẳng \((SAD)\) và \((SBC)\).

c) Gọi \(I = AC' \cap BD'\), chứng minh \(AC' \subset \left( {SAC} \right);\,\,BD' \subset \left( {SBD} \right) \Rightarrow I\) là điểm chung của hai mặt phẳng (SAC) và (SBD).

Lời giải chi tiết

a) Gọi \(O\) là giao điểm của \(AC\) và \(DB\); \(N\) là giao của \(EM\) và \(DC\).

\(M\) là trung điểm của \(AB\) nên \(N\) là trung điểm của \(DC\) (vì \(ABCD\) là hình thang)

Mà G là trọng tâm tam giác EDC nên \(G \in EN\)

\( \Rightarrow G \in \left( {SEM} \right)\) hay các điểm \(S, E, G, M\) cùng thuộc mặt phẳng \((\alpha)\) chính là mặt phẳng \((SEM)\)

Ta dễ thấy \(\left\{ \begin{array}{l}\left( {SEM} \right) \cap \left( {SAC} \right) = SO\\\left( {SEM} \right) \cap \left( {SBD} \right) = SO\end{array} \right.\)

b) \(E = AD \cap BC \Rightarrow E \in AD \Rightarrow E \in (SAD)\)

\(E ∈ BC ⇒ E ∈ (SBC)\)

Vậy \(E\) là một điểm chung của hai mặt phẳng \((SAD)\) và \((SBC)\)

\(S\) là điểm chung của hai mặt phẳng \((SAD)\) và  \((SBC)\)

\( \Rightarrow \left( {SAD} \right) \cap \left( {SBC} \right) = SE\)

c) \(C' = SC \cap KB \Rightarrow C' \in SC \Rightarrow C' \in \left( {SAC} \right)\)\( \Rightarrow AC' \subset \left( {SAC} \right)\)

Tương tự ta có: \(BD' ∈ (SDB)\)

Hai đường thẳng \(AC’\) và \(BD’\) cùng thuộc mặt phẳng \((ABK)\), giả sử \(I = AC' \cap BD'\)

\(I ∈ AC’ \subset (SAC); I ∈ BD’ \subset (SDB)\)

\(⇒ I\) là điểm chung của hai mặt phẳng \((SAC)\) và \((SDB)\) hay \(I ∈ d\) là giao tuyến của hai mặt phẳng (SAC) và (SBD).

 

 
Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved