Bài 3 trang 33 SGK Hình học 11

Đề bài

Trong mặt phẳng \(Oxy\) cho điểm \(I (1;1)\) và đường trong tâm \(I\) bán kính \(2\). Viết phương trình của đường tròn là ảnh của đường tròn trên qua phép đồng dạng có được bằng cách thực hiện liên tiếp phép quay tâm \(O\), góc \( 45^{\circ}\) và phép vị tự tâm \(O\), tỉ số \( \sqrt{2}\).

Phương pháp giải - Xem chi tiết

Phép quay tâm \(O\), góc quay \(45^0\) biến đường tròn tâm \(I\) bán kính \(R\) thành đường tròn tâm \(I_1\) bán kính \(R\), với \(I_1 = {Q_{\left( {O;{{45}^0}} \right)}}\left( I \right)\).

Phép vị tự tâm \(O\), tỉ số \(\sqrt{2}\) biến đường tròn tâm \(I_1\), bán kính \(R\) thành đường tròn tâm \(I_2\); bán kính \(R_2\), với \(I_2 = {V_{\left( {O;\sqrt 2 } \right)}}\left( I_1 \right);\,\,R_2 = \sqrt 2 R\).

Lời giải chi tiết

+ Gọi \(({I_1};{\rm{ }}{R_1}) = {\rm{ }}{Q_{\left( {O;{\rm{ }}45} \right)}}\;\left( {I;{\rm{ }}R} \right)\) (Phép quay đường tròn tâm \(I,\) bán kính \(R\) qua tâm \(O\) một góc \(45^0).\)

\( \Rightarrow \left\{ \begin{array}{l}
{I_1} = {Q_{\left( {O;{\rm{ }}45} \right)}}\;\left( I \right)\\
{R_1} = R
\end{array} \right.\)

Xác định \(I_1\):

Ta có:

\(\begin{array}{l}
{I_1} = {Q_{\left( {O;{\rm{ }}45} \right)}}\;\left( I \right) \Rightarrow \left\{ \begin{array}{l}
O{I_1} = OI\\
\widehat {IO{I_1}} = {45^o}
\end{array} \right.\\
\Rightarrow \left\{ \begin{array}{l}
O{I_1} = OI = \sqrt {{1^2} + {1^2}} = \sqrt 2 \\
\widehat {IO{I_1}} = {45^o} \Leftrightarrow {I_1} \in Oy
\end{array} \right.\\
\Rightarrow {I_1}\left( {0;\sqrt 2 } \right)
\end{array}\)

+ Gọi \(I_2\left( {x'';y''} \right) = {V_{\left( {O;\sqrt 2 } \right)}}\left( I_1 \right)\) ta có:

\(\overrightarrow {OI_2} = \sqrt 2\overrightarrow {OI_1} \)

\(\Leftrightarrow \left\{ \begin{array}{l}x'' = 2.0 = 0\\y'' = \sqrt 2.\sqrt 2 =2\end{array} \right.\)

\( \Rightarrow I''\left( {0;2 } \right)\)

Do đó phép vị tự tâm \(O\), tỉ số \(\sqrt{2}\) biến đường tròn tâm \(I_1\), bán kính R thành đường tròn tâm \(I_2\left( {0;2 } \right)\); bán kính \(R_2 = \sqrt 2 R = 2\sqrt 2 \).

Vậy phương trình đường tròn tâm \(I_2\), bán kính \(R_2\) là \({x^2} + {\left( {y - 2} \right)^2} = 8\).

Chú ý:

Cách khác để tìm \(I_1\) (chỉ dùng cho trắc nghiệm) như sau:

Gọi \(I_1(x';y') = {Q_{\left( {I;{{45}^0}} \right)}}\left( I \right)\) ta có:

\(\left\{ \begin{array}{l}x' = 1.\cos 45 - 1.\sin 45 = 0\\y' = 1.\sin 45 + 1.\cos 45 = \sqrt 2 \end{array} \right. \) \(\Rightarrow I_1\left( {0;\sqrt 2 } \right)\)

 

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved