Rút gọn biểu thức:
LG a
a)\({\log _3}6.{\rm{ }}\,{\log _8}9.{\rm{ }}\,{\log _6}2\);
Phương pháp giải:
+) Sử dụng công thức logarit: \({\log _a}b.\,{\log _b}c = {\log _a}c; \, \, {\log _a}{b^n} = n.{\log _a}b;\\{\log _{{a^m}}}b = \frac{1}{m}.{\log _a}b; \;\; {\log _{{a^m}}}b^n = \frac{n}{m}.{\log _a}b.\)
Với điều kiện các biểu thức đều có nghĩa.
Lời giải chi tiết:
\(\begin{array}{l}
{\log _3}6.\,{\log _8}9.\,{\log _6}2\\
= \left( {{{\log }_3}6.\,{{\log }_6}2} \right).{\log _8}9\\
= {\log _3}2.\,{\log _{{2^3}}}{3^2}\\
= {\log _3}2.\left( {2.\dfrac{1}{3}.\,{{\log }_2}3} \right)\\
= \dfrac{2}{3}.\left( {{{\log }_3}2.\,{{\log }_2}3} \right)\\
= \dfrac{2}{3}.\,{\log _3}3\\
= \dfrac{2}{3}
\end{array}\)
LG b
b) \({\log _a}{b^2} + {\rm{ }}{\log _{{a^2}}}{b^4}\)
Lời giải chi tiết:
\({\log _a}{b^2} + {\log _{{a^2}}}{b^4}\)
\( = {\log _a}{b^2} + {\log _{{a^2}}}{\left( {{b^2}} \right)^2}\)
\( = {\log _a}{b^2} + 2.\dfrac{1}{2}.{\log _a}{b^2}\)
\( = {\log _a}{b^2} + {\log _a}{b^2} \)
\(= 2{\log _a}{b^2}\)
\( = 4{\log _a}\left| b \right|\)
Cách khác:
\(\begin{array}{l}
{\log _a}{b^2} + {\log _{{a^2}}}{b^4}\\
= 2{\log _a}\left| b \right| + 4.\dfrac{1}{2}.{\log _a}\left| b \right|\\
= 2{\log _a}\left| b \right| + 2.{\log _a}\left| b \right|\\
= 4{\log _a}\left| b \right|
\end{array}\)
Tóm tắt, bố cục, nội dung chính các tác phẩm SGK Ngữ văn 12 - tập 1
CHƯƠNG IX. HẠT NHÂN NGUYÊN TỬ
Unit 5. Higher Education
Chương 4. Dao động và sóng điện từ
Bài 27. Vấn đề phát triển một số ngành công nghiệp trọng điểm