Tìm tập xác định của các hàm số:
LG a
a) \(y = {\log_2}\left( {5 - 2x} \right)\) ;
Phương pháp giải:
Hàm số \(y = {\log _a}{f \left( x \right)} \,\,\left( {0 < a \ne 1} \right)\) xác định khi và chỉ khi \(f \left( x \right) > 0\).
Lời giải chi tiết:
Hàm số \(y = {\log_2}\left( {5 - 2x} \right)\) xác định khi và chỉ khi:
\(5- 2x > 0\Leftrightarrow x < \dfrac{5}{2}.\)
Vậy hàm số \(y ={\log_2}\left( {5 - 2x} \right)\) có tập xác định là \(D=\left( \displaystyle{ - \infty ;{5 \over 2}} \right).\)
LG b
b) \(y ={\log_3}({x^2} - 2x)\) ;
Phương pháp giải:
Hàm số \(y = {\log _a}{f \left( x \right)} \,\,\left( {0 < a \ne 1} \right)\) xác định khi và chỉ khi \(f \left( x \right) > 0\).
Lời giải chi tiết:
Hàm số \(y ={\log_3}({x^2} - 2x)\) xác định khi và chỉ khi:
\({x^2} - 2x > 0 \Leftrightarrow \left[ \begin{array}{l}
x > 2\\
x < 0
\end{array} \right.\)
Vậy hàm số \(y ={\log_3}({x^2} - 2x)\) có tập xác định là \(D=(-∞; 0) ∪ (2;+∞)\).
LG c
c) \(y=\log_{\frac{1}{5}}\left ( x^{2} -4x+3 \right )\);
Phương pháp giải:
Hàm số \(y = {\log _a}{f \left( x \right)} \,\,\left( {0 < a \ne 1} \right)\) xác định khi và chỉ khi \(f \left( x \right) > 0\).
Lời giải chi tiết:
Hàm số \(y=\log_{\frac{1}{5}}\left ( x^{2} -4x+3 \right )\) xác định khi và chỉ khi
\({x^2} - 4x + 3 > 0 \Leftrightarrow \left[ \begin{array}{l}
x > 3\\
x < 1
\end{array} \right.\)
Vậy hàm số \(y= \log_{\frac{1}{5}}\left ( x^{2} -4x+3 \right )\) có tập xác định là \(D=(-∞; 1) ∪ (3;+∞)\).
LG d
d) \(y= \log_{0,4}\dfrac{3x+2}{1-x}\).
Phương pháp giải:
Hàm số \(y = {\log _a}{f \left( x \right)} \,\,\left( {0 < a \ne 1} \right)\) xác định khi và chỉ khi \(f \left( x \right) > 0\).
Lời giải chi tiết:
Hàm số \(y= \log_{0,4}\dfrac{3x+2}{1-x}\) xác định khi và chỉ khi:
\(\dfrac{3x+2}{1-x} > 0\)
\(\Leftrightarrow \left[ \begin{array}{l}
\left\{ \begin{array}{l}
3x + 2 > 0\\
1 - x > 0
\end{array} \right.\\
\left\{ \begin{array}{l}
3x + 2 < 0\\
1 - x < 0
\end{array} \right.
\end{array} \right. \)\(\Leftrightarrow \left[ \begin{array}{l}
\left\{ \begin{array}{l}
x > - \frac{2}{3}\\
x < 1
\end{array} \right.\\
\left\{ \begin{array}{l}
x < - \frac{2}{3}\\
x > 1
\end{array} \right.\left( {VN} \right)
\end{array} \right. \)\(\Leftrightarrow - \frac{2}{3} < x < 1\)
Vậy hàm số \(y = \log_{0,4}\dfrac{3x+1}{1-x}\) có tập xác định là \(D=\left( \displaystyle{ - {2 \over 3};1} \right)\).
Chú ý:
Các em cũng có thể lập bảng xét dấu các nhị thức bậc nhất như sau:
Đề kiểm tra 45 phút - Chương 3 – Hóa học 12
Unit 10. Lifelong Learning
Chương 1. Cơ chế di truyền và biến dị
Một số vấn đề phát triển và phân bố công nghiệp
Đề thi học kì 1 mới nhất có lời giải