Bài 3 trang 82 SGK Đại số và Giải tích 11

Lựa chọn câu hỏi để xem giải nhanh hơn
LG a
LG b

Chứng minh rằng với mọi số tự nhiên \(n ≥ 2\), ta có các bất đẳng thức:

Lựa chọn câu hỏi để xem giải nhanh hơn
LG a
LG b

LG a

\(3^n> 3n + 1\)

Phương pháp giải:

Vận dụng phương pháp chứng minh quy nạp toán học.

Bước 1: Chứng minh mệnh đề đúng với \(n=2\).

Bước 2: Giả sử đẳng thức đúng đến \(n=k \ge 2\) (giả thiết quy nạp). Chứng minh đẳng thức đúng đến \(n=k+1\).

Khi đó đẳng thức đúng với mọi \(n \in N^*\).

Lời giải chi tiết:

Với \(n=2\) ta có: \(3^2 = 9 > 7 = 3.2+1\) (đúng)

Giả sử bất đẳng thức đúng với \(n = k ≥ 2\), tức là

\(3^k> 3k + 1\)         (1).

Ta chứng minh bất đẳng thức đúng với \(n=k+1\), tức là cần chứng minh: \(3^{k+1}> 3(k+1) + 1=3k+4\)

Nhân hai vế của (1) với \(3\), ta được:

\(3^{k+1} > 9k + 3 \)

\(\Leftrightarrow 3^{k+1} > 3k + 4 + 6k -1\)

Vì \(k \ge 2 \Rightarrow 6k - 1 \ge 11 > 0\) nên \(3^{k+1} > 3k + 4 +11 > 3k + 4 = 3(k+1)+1).\)

Tức là bất đẳng thức đúng với \(n = k + 1\).

Vậy \(3^n> 3n + 1\)  với mọi số tự nhiên \(n ≥ 2\).

LG b

\(2^{n+1} > 2n + 3\)

Lời giải chi tiết:

Với \(n = 2\) thì \({2^{2 + 1}} = 8 > 7 = 2.2 + 3\) (đúng)

Giả sử bất đẳng thức đúng với \(n = k ≥ 2\), tức là

\(2^{k+1} > 2k + 3\)          (2)

Ta phải chứng minh nó cũng đúng với \(n= k + 1\), nghĩa là phải chứng minh

\({2^{k{\rm{ }} + {\rm{ }}2}} > 2\left( {k{\rm{ }} + {\rm{ }}1} \right) + 3{\rm{ }} \)

\(\Leftrightarrow {2^{k{\rm{ }} + {\rm{ }}2}} > 2k + 5\)

Nhân hai vế của bất đẳng thức (2) với \(2\), ta được:

\({2^{k + 2}} > 4k + 6 \)

\(\Leftrightarrow {2^{k+2}} > 2k + 5 + 2k + 1\)

Vì \(k \ge 2 \Rightarrow 2k + 1> 0\) nên \({2^{k + 2}}> 2k + 5\).

Tức là bất đẳng thức đúng với \(n=k+1\).

Vậy theo phương pháp quy nạp toán học thì bất đẳng thức \({2^{n+1}} > 2n + 3\) đúng với mọi số tự nhiên \(n ≥ 2\).

Cách khác:

+ Với \(n = 2\) thì bất đẳng thức \( \Leftrightarrow \;8 > 7\) (luôn đúng).

+ Giả sử bđt đúng khi \(n = k \ge 2\), nghĩa là \({2^{k + 1}}\; > 2k + 3.\)

Ta chứng minh đúng với \(n=k+1\) tức là chứng minh: \({2^{k + 2}}\; > 2(k +1)+ 3.\)

Thật vậy, ta có:

\(\begin{array}{*{20}{l}}
{{2^{k{\rm{ }} + {\rm{ }}2}}\; = {\rm{ }}{{2.2}^{k{\rm{ }} + {\rm{ }}1}}}\\
{ > {\rm{ }}2.\left( {2k{\rm{ }} + {\rm{ }}3} \right) = {\rm{ }}4k + 6{\rm{ }} = 2k + 2 + 2k + 4.}\\
{ > {\rm{ }}2k + 2 + 3 = 2.\left( {k + 1} \right) + 3}
\end{array}\)

(Vì \(2k + 4 >3\) với mọi \(k ≥ 2\))

\( \Rightarrow \;\left( 2 \right)\) đúng với \(n = k + 1\).

Vậy \({2^{n{\rm{ }} + {\rm{ }}1}}\; > {\rm{ }}2n + 3\;\) với mọi \(n ≥ 2\).

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Bình luận (0)
Bạn cần đăng nhập để bình luận
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved
gift-box
survey
survey
Đặt câu hỏi