1. Nội dung câu hỏi
Cho hình chóp cụt lục giác đều \(ABCDEF.A'B'C'D'E'F'\) với \(O\) và \(O'\) là tâm hai đáy, cạnh đáy lớn và đáy nhỏ lần lượt là \(a\) và \(\frac{a}{2},OO' = a\)
a) Tìm góc giữa cạnh bên và mặt đáy.
b) Tìm góc phẳng nhị diện \(\left[ {O,AB,A'} \right];\left[ {O',A'B',A} \right]\).
2. Phương pháp giải
‒ Cách tính góc giữa đường thẳng và mặt phẳng: Tính góc giữa đường thẳng đó và hình chiếu của nó lên mặt phẳng.
‒ Cách xác định góc phẳng nhị diện \(\left[ {A,d,B} \right]\): Dựng mặt phẳng \(\left( P \right)\) vuông góc với , gọi \(a,a'\) lần lượt là giao tuyến của \(\left( P \right)\) với hai nửa mặt phẳng chứa \(A,B\), khi đó \(\left[ {A,d,B} \right] = \left( {a,a'} \right)\).
3. Lời giải chi tiết
a) Kẻ \(C'H \bot OC\left( {H \in OC} \right)\)
là hình chữ nhật \( \Rightarrow OH = O'C' = a,OO'\parallel C'H\)
Mà \(OO' \bot \left( {ABCDEF} \right)\)
\(\begin{array}{l} \Rightarrow C'H \bot \left( {ABCDEF} \right)\\ \Rightarrow \left( {CC',\left( {ABCDEF} \right)} \right) = \left( {CC',CH} \right) = \widehat {C'CH}\end{array}\)
\(\begin{array}{l}HC = OC - O'C' = \frac{a}{2},C'H = OO' = a\\ \Rightarrow \tan \widehat {C'CH} = \frac{{C'H}}{{HC}} = 2 \Rightarrow \widehat {C'CH} \approx 63,{4^ \circ }\end{array}\)
Vậy \(\left( {CC',\left( {ABCDEF} \right)} \right) \approx 63,{4^ \circ }\)
b) Gọi \(M,M'\) lần lượt là trung điểm của \(AB,A'B'\).
\( \Rightarrow OM \bot AB,O'M' \bot A'B'\)
\(ABB'A'\) là hình thang cân \( \Rightarrow MM' \bot AB,MM' \bot A'B'\)
\( \Rightarrow \left[ {O,AB,A'} \right] = \widehat {OMM'},\left[ {O',A'B',A} \right] = \widehat {O'M'M}\)
Kẻ \(M'K \bot OM\left( {K \in OM} \right)\)
\(OO'M'K\) là hình chữ nhật \( \Rightarrow OK = O'K' = \frac{{A'B'\sqrt 3 }}{2} = \frac{{a\sqrt 3 }}{4},OO' = M'K = a\)
\(\begin{array}{l}OM = \frac{{AB\sqrt 3 }}{2} = \frac{{a\sqrt 3 }}{2},MK = OM - OK = \frac{{a\sqrt 3 }}{4}\\ \Rightarrow \tan \widehat {OMM'} = \frac{{M'K}}{{MK}} = \frac{4}{{\sqrt 3 }} \Rightarrow \widehat {OMM'} \approx 66,{6^ \circ }\\ \Rightarrow \widehat {O'M'M} = {180^ \circ } - \widehat {OMM'} = 113,{4^ \circ }\end{array}\)
Unit 1: Generation gap and Independent life
Bài 4. Thực hành: Tìm hiểu những cơ hội và thách thức của toàn cầu hóa đối với các nước đang phát triển - Tập bản đồ Địa lí 11
Một số tác giả, tác phẩm văn học tham khảo - Ngữ văn 11
Tải 10 đề kiểm tra 45 phút (1 tiết) - Chương II - Hóa học 11
Unit 8: Celebrations - Lễ kỉ niệm
SBT Toán Nâng cao Lớp 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Nâng cao Lớp 11
SGK Toán Lớp 11