Bài 3 trang 92 SGK Hình học 12

Lựa chọn câu hỏi để xem giải nhanh hơn
LG a
LG b
LG c

Trong hệ toạ độ \(Oxyz\), cho bốn điểm \(A(-2 ; 6 ; 3), B(1 ; 0 ; 6), C(0; 2 ; -1), D(1 ; 4 ; 0)\)

Lựa chọn câu hỏi để xem giải nhanh hơn
LG a
LG b
LG c

LG a

LG a

a) Viết phương trình mặt phẳng \((BCD)\). Suy ra \(ABCD\) là một tứ diện.

Phương pháp giải:

Mặt phẳng \((BCD)\) đi qua \(B\) và nhận \(\overrightarrow a  = \left[ {\overrightarrow {BC} ;\overrightarrow {BD} } \right]\) là 1 VTPT. Chứng minh ABCD là tứ diện bằng cách chứng minh \(A \notin \left( {BCD} \right)\)

Lời giải chi tiết:

Ta có: \(\overrightarrow {BC} = (-1; 2; -7)\),  \(\overrightarrow {BD}= (0; 4; -6)\)

Xét vectơ \(\overrightarrow a  = \left[ {\overrightarrow {BC} ,\overrightarrow {BD} } \right]\)    \( \Rightarrow \overrightarrow a  = (16; - 6; - 4) = 2(8; - 3; - 2)\)

Mặt phẳng \((BCD)\) đi qua \(B\) và nhận \(\overrightarrow {a'}  = (8; -3; -2)\) làm vectơ pháp tuyến nên có phương trình:

\(8(x - 1) -3y - 2(z - 6) = 0\) \( \Leftrightarrow  8x - 3y - 2z + 4 = 0\)

Thay toạ độ của \(A\) vào phương trình của \((BC)\) ta có:

\(8.(-2) - 3.6 - 2.3 + 4 = -36 ≠ 0\)

Điều này chứng tỏ điểm \(A\) không thuộc mặt phẳng \((BCD)\) hay bốn điểm \(A, B, C, D\) không đồng phẳng, và \(ABCD\) là một tứ diện.

LG b

LG b

b) Tính chiều cao \(AH\) của tứ diện \(ABCD\)

Phương pháp giải:

\(AH = d\left( {A;\left( {BCD} \right)} \right)\)

Lời giải chi tiết:

Chiều cao \(AH\) của tứ diện chính là khoảng cách từ \(A\) đến mặt phẳng \((BCD)\):

\(AH = d(A,(BCD))\) = \({{\left| {8.( - 2) - 3.6 - 2.3 + 4} \right|} \over {\sqrt {{8^2} + {{( - 3)}^2} + {{( - 2)}^2}} }} = {{36} \over {\sqrt {77} }}\)

LG c

LG c

c) Viết phương trình mặt phẳng \((α)\) chứa \(AB\) và song song với \(CD\).

Phương pháp giải:

\({\overrightarrow n _{\left( \alpha  \right)}} = \left[ {\overrightarrow {AB} ;\overrightarrow {CD} } \right]\) là 1 VTPT của mặt phẳng \((\alpha)\) và \((\alpha)\) đi qua A.

Lời giải chi tiết:

Ta có: \(\overrightarrow {AB}  = (3; - 6; 3)\), \(\overrightarrow {CD}  = ( 1; 2; 1)\)

Mặt phẳng \((α)\) chứa \(AB\) và \(CD\) chính là mặt phẳng đi qua \(A(-2; 6; 3)\) và nhận cặp vectơ \(\overrightarrow {AB} \), \(\overrightarrow {CD} \) làm cặp vectơ chỉ phương, có vectơ pháp tuyến \(\overrightarrow n  = \left[ {\overrightarrow {AB} ,\overrightarrow {CD} } \right]\)

Ta có: \(\overrightarrow {AB}  = \left( {3; - 6;3} \right);\,\,\overrightarrow {CD}  = \left( {1;2;1} \right)\)

\(\Rightarrow \overrightarrow n \) = \((-12; 0; 12) = -12(1; 0; -1)\)

Vậy phương trình của \((α)\) là:

\(1(x + 2) + 0(y - 6) - 1(z - 3) = 0 \)\( \Leftrightarrow x - z + 5 = 0\)

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved