Bài 1. Phương trình bậc nhất hai ẩn
Bài 2. Hệ hai phương trình bậc nhất hai ẩn
Bài 3. Giải hệ phương trình bằng phương pháp thế
Bài 4. Giải hệ phương trình bằng phương pháp cộng đại số.
Bài 5. Giải bài toán bằng cách lập hệ phương trình
Bài 6.Giải bài toán bằng cách lập hệ phương trình (Tiếp theo)
Ôn tập chương III - Hệ hai phương trình bậc nhất hai ẩn
Đề kiểm 15 phút - Chương 3 - Đại số 9
Đề kiểm tra 45 phút (1 tiết) - Chương 3 - Đại số 9
Bài 1. Hàm số y = ax^2 (a ≠ 0)
Bài 2. Đồ thị của hàm số y = ax^2 (a ≠ 0).
Bài 3. Phương trình bậc hai một ẩn
Bài 4. Công thức nghiệm của phương trình bậc hai
Bài 5. Công thức nghiệm thu gọn
Bài 6. Hệ thức Vi-ét và ứng dụng
Bài 7. Phương trình quy về phương trình bậc hai
Bài 8. Giải bài toán bằng cách lập phương trình
Ôn tập chương IV - Hàm số y = ax^2 (a ≠ 0). Phương trình bậc hai một ẩn
Đề kiểm tra 15 phút - Chương 4 - Đại số 9
Đề kiểm tra 45 phút (1 tiết) - Chương 4 - Đại số 9
Đề bài
Một ô tô đi từ \(A\) và dự định đến B lúc \(12\) giờ trưa. Nếu xe chạy với vận tốc \(35 km/h\) thì sẽ đến \(B\) chậm \(2\) giờ so với quy định. Nếu xe chạy với vận tốc \(50 km/h\) thì sẽ đến \(B\) sớm \(1\) giờ so với quy định. Tính độ dài quãng đường \(AB\) và thời điểm xuất phát của ôtô tại \(A\).
Phương pháp giải - Xem chi tiết
Sử dụng công thức: \(S=v.t\), trong đó \(S\) là quãng đường đi được (km); \(v\) là vận tốc (km/h); \(t\) là thời gian (h).
Lời giải chi tiết
Gọi \(x \) (km) là độ dài quãng đường \(AB\), \(y\) (giờ) là thời gian dự định đi từ \(A\) để đến \(B\) đúng lúc \(12\) giờ trưa. Điều kiện \(x > 0, y > 1\) (do ôtô đến \(B\) sớm hơn \(1\) giờ).
+) Trường hợp 1:
Xe đi với vận tốc \(35\) km (h)
Xe đến \(B\) chậm hơn \(2\) giờ nên thời gian đi hết là: \(y+2\) (giờ)
Quãng đường đi được là: \(35(y+2)\) (km)
Vì quãng đường không đổi nên ta có phương trình: \(x=35(y+2)\) (1)
+) Trường hợp 2:
Xe đi với vận tốc: \(50\) km/h
Vì xe đến \(B\) sớm hơn \(1\) giờ nên thời gian đi hết là: \(y-1\) (giờ)
Quãng đường đi được là: \(50(y-1) \) (km)
Vì quãng đường không đổi nên ta có phương trình: \(x=50(y-1)\) (2)
Từ (1) và (2) ta có hệ phương trình:
\(\left\{\begin{matrix} x = 35(y + 2) & & \\ x = 50(y - 1) & & \end{matrix}\right. \Leftrightarrow \left\{\begin{matrix} x = 35y + 70 & & \\ x = 50y - 50 & & \end{matrix}\right.\)
\(\Leftrightarrow \left\{\begin{matrix} x - 35y = 70 \ (1) & & \\ x - 50y =- 50 \ (2) & & \end{matrix}\right.\)
Lấy vế trừ vế của (1) cho (2), ta được:
\(\left\{\begin{matrix} 15y =120 & & \\ x -50y =- 50 & & \end{matrix}\right.\) \(\Leftrightarrow \left\{\begin{matrix} y =8 & & \\ x =- 50+50y & & \end{matrix}\right.\)
\(\Leftrightarrow \left\{\begin{matrix} y =8 & & \\ x =- 50+50.8 & & \end{matrix}\right.\) \(\Leftrightarrow \left\{\begin{matrix} y =8 & & \\ x =350 & & \end{matrix} (thỏa\ mãn)\right.\)
Vậy quãng đường \(AB\) là \(350\)km.
Thời điểm xuất phát của ô tô tại \(A\) là: 12 giờ - 8 giờ = 4 giờ.
TÀI LIỆU DẠY - HỌC HÓA 9 TẬP 2
Đề thi học kì 1 của các trường có lời giải – Mới nhất
Đề thi vào 10 môn Anh Đắk Lắk
Bài giảng ôn luyện kiến thức giữa học kì 1 môn Giáo dục công dân lớp 9
Chương 1. Các loại hợp chất vô cơ