PHẦN HÌNH HỌC - TOÁN 8 TẬP 2

Bài 30 trang 75 - Sách giáo khoa toán 8 tập 2

Đề bài

Tam giác \(ABC\) có độ dài các cạnh là \(AB = 3cm, AC = 5cm, BC = 7cm\). Tam giác \(A'B'C'\) đồng dạng với tam giác \(ABC\) và có chu vi bằng \(55 cm\). 

Hãy tính độ dài các cạnh của \(A'B'C'\) (làm tròn đến chữ số thập phân thứ hai).

Phương pháp giải - Xem chi tiết

Áp dụng: Tính chất hai tam giác đồng dạng.

Lời giải chi tiết

 

\( \Rightarrow \Delta ABC \) đồng dạng \( \Delta A'B'C'\left( {gt} \right)\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

\(\dfrac{{AB}}{{A'B'}} = \dfrac{{AC}}{{A'C'}} = \dfrac{{BC}}{{B'C'}}\)\(\, = \dfrac{{AB + AC + BC}}{{A'B' + A'C' + B'C'}}\) \( = \dfrac{{{C_{ABC}}}}{{{C_{A'B'C'}}}}\)

hay \(\dfrac{3}{A'B'}\) = \(\dfrac{7}{B'C'}\) = \(\dfrac{5}{A'C'}\) = \(\dfrac{C_{ABC}}{55}\) = \(\dfrac{3 + 7 + 5}{55}\) = \(\dfrac{{15}}{{55}}\) = \(\dfrac{3}{11}\)

(với \(C_{ABC}\) và \(C_{A'B'C'}\) lần lượt là chu vi của hai tam giác \(ABC, A'B'C'\))  

\( + )\,\,\dfrac{3}{{A'B'}} = \dfrac{3}{{11}}\)\(\; \Rightarrow A'B' = \dfrac{{3.11}}{3} = 11\,cm\) 

\( + )\,\,\dfrac{7}{{B'C'}} = \dfrac{3}{{11}}\)\(\; \Rightarrow B'C' = \dfrac{{7.11}}{3} \approx  25,67\,cm\)

\( + )\,\,\dfrac{5}{{A'C'}} = \dfrac{3}{{11}}\)\(\; \Rightarrow A'C' = \dfrac{{5.11}}{3} \approx 18,33\,cm\) 

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved