Bài 3.10 trang 66 Chuyên đề Toán 11

1. Nội dung câu hỏi

Trong HĐ7, bằng cách xét tam giác vuông OIA và tính tỉ số IAOA , chứng minh rằng trong phép chiếu trục đo vuông góc đều thì p = q = r = 63 .

Bài 3.10 trang 66 Chuyên đề Toán 11

 

2. Phương pháp giải 

Đọc kĩ yêu cầu, gợi nhớ kiến thức để thực hiện.

 

3. Lời giải chi tiết

Bài 3.10 trang 66 Chuyên đề Toán 11

Gọi M là trung điểm của BC.

Ta có: O.ABC là hình chóp tam giác đều nên OA = OB = OC. 

Vì I là tâm tam giác đều ABC nên . (1)

Tam giác OBC vuông cân tại O nên OM vừa là đường cao, vừa là đường phân giác, vừa là đường trung tuyến.

Suy ra OM=12BC  hay 2OM = BC.

Tam giác vuông cân OBC có 2OB2 = BC2.

Do đó: 2OB2 = 4OM2. Suy ra OM212 OA2. (2)

Tam giác OIM vuông tại I có: OI2 + IM2 = OM2. (3)

Mà OI2 = OA2 – IA2 (tam giác OIA vuông tại I) (4)

Thay (1), (2), (4) vào (3) ta được: OA2IA2+14IA2=12OA2 .

Suy ra IA2OA2=23 nên IAOA=63 .

Mà IA = O'A' (do AIO'A' là hình bình hành).

Do đó, p = q = r = O'A'OA=63 .

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved