Bài 3.14 trang 11 SBT Vật Lí 12

Đề bài

Một con lắc đơn gồm một quả cầu nhỏ, khối lượng \(m = 50g\) treo vào đầu tự do của một sợi dây mảnh dài \(l = 1,0m\) ở một nơi có gia tốc trọng trường\(g = 9,8m/{s^2}\). Bỏ qua ma sát.

a) Cho con lắc dao động với biên độ nhỏ. Tính chu kì dao động của con lắc.

b) Kéo con lắc ra khỏi vị trí cân bằng tới góc lệch \({30^0}\) rồi thả không vận tốc đầu. Hãy tính:

+ Tốc độ cực đại của quả cầu

+ Tốc độ của quả cầu tại vị trí li độ góc \({10^0}\).

Phương pháp giải - Xem chi tiết

a) Sử dụng công thức tính chu kì dao động: \(T = 2\pi \sqrt {\dfrac{l}{g}} \)

b) Sử dụng công thức tính tốc độ:\({v_{\max }} = \sqrt {2gl(\cos \alpha  - \cos {\alpha _0})}\)

Lời giải chi tiết

a) Chu kì dao động: \(T = 2\pi \sqrt {\dfrac{l}{g}}  = 2\pi \sqrt {\dfrac{1}{{9,8}}}  = 2s\)

b) Ta có công thức tính động năng

\(\begin{array}{l}\left\{ \begin{array}{l}{{\rm{W}}_d} = \dfrac{1}{2}m{v^2}\\{{\rm{W}}_d} = mgl(\cos \alpha  - \cos {\alpha _0})\end{array} \right.\\ \Rightarrow v = \sqrt {2gl(\cos \alpha  - \cos {\alpha _0})} \end{array}\)

+ Tốc độ cực đại của quả cầu: \(\alpha  = {0^0}\)

\({v_{\max }} = \sqrt {2.9,8.1.(\cos {0^0} - \cos {{30}^0})}\)\(= 1,62(m/s)\)

Tại \(\alpha  = {10^0}\):

\(v = \sqrt {2.9,8.1.(\cos {{10}^0} - \cos {{30}^0})}\)\(= 1,53(m/s)\)

 

 
Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved