PHẦN HÌNH HỌC - TOÁN 9 TẬP 2

Bài 32 trang 80 sgk Toán lớp 9 tập 2

Đề bài

Cho đường tròn tâm \(O\) đường kính \(AB\). Một tiếp tuyến của đường tròn tại \(P\) cắt đường thẳng \(AB\) tại \(T\) (điểm \(B\) nằm giữa \(O\) và \(T\))

Chứng minh: \(\widehat {BTP} + 2.\widehat {TPB} = {90^0}\).

Phương pháp giải - Xem chi tiết

+) Trong một đường tròn, góc nội tiếp và góc tạo bởi tia tiếp tuyến và dây cung cùng chắn một cung thì có số đo bằng nhau và bằng nửa số đo cung bị chắn.

+) Tổng hai góc nhọn trong tam giác vuông bằng \(90^0\)

Lời giải chi tiết

 

              

Cách 1:

Ta có \(\widehat {TPB}\) là góc tạo bởi tiếp tuyến \(PT\) và dây cung \(PB\) của đường tròn \((O)\) nên  \(\widehat {TPB}=\dfrac{1}{2}sđ\overparen{BP}\) (1)

Lại có: \(\widehat {BOP}=sđ\overparen{BP}\)   (góc ở tâm chắn \(\overparen{BP}\)) (2)

Từ (1) và (2) suy ra  \(\widehat {BOP} = 2.\widehat {TPB}\).

Vì \(TP\) là tiếp tuyến của đường tròn \((O)\) nên \( OP \bot TP\). Do đó tam giác \(TPO\) vuông tại \(P\), ta có \(\widehat {BOP} + \widehat {BTP}=90^0.\)

hay \(\widehat {BTP} + 2.\widehat {TPB} = {90^0}\) (đpcm)

Cách 2:

Vì \(\widehat {BAP} = \widehat{BPT}\) ( góc nội tiếp chắn cung và góc tạo bởi tiếp tuyến và dây cung \(PB\))

Vì \(\widehat {B_{1}}\) là góc ngoài tại đỉnh B của tam giác BPT nên

\(\widehat {B_{1}} =\widehat {BTP} +\widehat {BPT}\)

\(\Rightarrow \widehat {BAP}+\widehat {B_{1}} =\widehat {BPT}+ \widehat {BTP} +\widehat {BPT}=\widehat {BTP} + 2.\widehat {TPB}\)(3)

Xét đường tròn (O) có: \(\widehat{APB}= 90^0\)( góc nội tiếp chắn nửa đường tròn)

\(\Rightarrow\) Tam giác APB vuông tại P

\(\Rightarrow\) \(\widehat {BAP}+\widehat {B_{1}} =90^0\) (4)

Từ (3) và (4) ta có:\(\Rightarrow\) \(\widehat {BTP} + 2.\widehat {TPB} = {90^0}\) (đpcm)

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved