Bài 1. Mở đầu về phương trình
Bài 2. Phương trình bậc nhất một ẩn và cách giải
Bài 3. Phương trình đưa được về dạng ax + b = 0
Bài 4. Phương trình tích
Bài 5. Phương trình chứa ẩn ở mẫu
Bài 6. Giải bài toán bằng cách lập phương trình
Bài 7. Giải bài toán bằng cách lập phương trình (tiếp)
Ôn tập chương III. Phương trình bậc nhất một ẩn
Tìm các giá trị của \(a\) sao cho mỗi biểu thức sau có giá trị bằng \(2\):
LG a.
\(\dfrac{{3a - 1}}{{3a + 1}} + \dfrac{{a - 3}}{{a + 3}}\)
Phương pháp giải:
Cho giá trị biểu thức bằng 2 bài toán trở thành bài toán giải phương trình chứa ẩn ở mẫu ( với ẩn a)
B1: Đặt ĐKXĐ của phương trình.
B2: Quy đồng khử mẫu
B3: Sử dụng quy tắc chuyển vế để tìm a.
B4: Kết luận (Kiểm tra giá trị của a tìm được có thỏa mãn với ĐKXĐ không)
Lời giải chi tiết:
Ta có phương trình:\(\dfrac{{3a - 1}}{{3a + 1}} + \dfrac{{a - 3}}{{a + 3}} = 2\);
ĐKXĐ: \(a \ne - \dfrac{1}{3},a \ne - 3\)
Quy đồng hai vế phương trình ta được:
\(\dfrac{{\left( {3a - 1} \right)\left( {a + 3} \right)}}{{\left( {3a + 1} \right)\left( {a + 3} \right)}} + \dfrac{{\left( {a - 3} \right)\left( {3a + 1} \right)}}{{\left( {3a + 1} \right)\left( {a + 3} \right)}} \)\(\,= \dfrac{{2\left( {3a + 1} \right)\left( {a + 3} \right)}}{{\left( {3a + 1} \right)\left( {a + 3} \right)}}\)
Khử mẫu ta được :
\(\left( {3a - 1} \right)\left( {a + 3} \right) + \left( {a - 3} \right)\left( {3a + 1} \right) \)\(= 2\left( {3a + 1} \right)\left( {a + 3} \right)\)
⇔ \(3{a^2} + 9a - a - 3 + 3{a^2} - 9a + a - 3 \)\(= 6{a^2} + 18a + 2a + 6\)
⇔ \(6{a^2} - 6 = 6{a^2} + 20a + 6\)
\( \Leftrightarrow 6{a^2} - 6{a^2} - 20a = 6 + 6\)
\( \Leftrightarrow - 20a = 12\)
⇔ \(a = 12:(-20)\)
⇔ \(a = - \dfrac{3}{5}\) (thỏa mãn)
Vậy \(a = - \dfrac{3}{5}\) thì biểu thức \(\dfrac{{3a - 1}}{{3a + 1}} + \dfrac{{a - 3}}{{a + 3}}\) có giá trị bằng \(2\).
LG b.
\(\dfrac{{10}}{3} - \dfrac{{3a - 1}}{{4a + 12}} - \dfrac{{7a + 2}}{{6a + 18}}\)
Phương pháp giải:
Cho giá trị biểu thức bằng 2 bài toán trở thành bài toán giải phương trình chứa ẩn ở mẫu ( với ẩn a)
B1: Đặt ĐKXĐ của phương trình.
B2: Quy đồng khử mẫu
B3: Sử dụng quy tắc chuyển vế để tìm a.
B4: Kết luận (Kiểm tra giá trị của a tìm được có thỏa mãn với ĐKXĐ không)
Lời giải chi tiết:
Ta có phương trình: \(\dfrac{{10}}{3} - \dfrac{{3a - 1}}{{4a + 12}} - \dfrac{{7a + 2}}{{6a + 18}} = 2\)
ĐKXĐ:\(a \ne -3;\)
\(\dfrac{{10}}{3} - \dfrac{{3a - 1}}{{4a + 12}} - \dfrac{{7a + 2}}{{6a + 18}} = 2\)
\( \Leftrightarrow \dfrac{{10}}{3} - \dfrac{{3a - 1}}{{4(a + 3)}} - \dfrac{{7a + 2}}{{6(a + 3)}} = 2\)
\(\Leftrightarrow \dfrac{{4.10\left( {a + 3} \right)}}{{12\left( {a + 3} \right)}} - \dfrac{{3\left( {3a - 1} \right)}}{{12\left( {a + 3} \right)}}\)\(\, - \dfrac{{2\left( {7a + 2} \right)}}{{12\left( {a + 3} \right)}} = \dfrac{{2.12\left( {a + 3} \right)}}{{12\left( {a + 3} \right)}}\)
Khử mẫu ta được:
\(40\left( {a + 3} \right) - 3\left( {3a - 1} \right) - 2\left( {7a + 2} \right) \)\(= 24\left( {a + 3} \right)\)
⇔\(40a + 120 - 9a + 3 - 14a - 4 \)\(= 24a + 72\)
⇔\(17a + 119 = 24a + 72\)
\( \Leftrightarrow 17a - 24a = 72 - 119\)
⇔ \( - 7a = - 47\)
⇔ \(a = \dfrac{{47}}{7}\) (thỏa mãn)
Vậy \(a=\dfrac{{47}}{7}\) thì biểu thức \(\dfrac{{10}}{3} - \dfrac{{3a - 1}}{{4a + 12}} - \dfrac{{7a + 2}}{{6a + 18}}\) có giá trị bằng \(2\).
Bài 17: Nghĩa vụ tôn trọng, bảo vệ tài sản nhà nước và lợi ích công cộng
CHƯƠNG 5. HIĐRO - NƯỚC
Bài 32
Tải 20 đề ôn tập học kì 2 Văn 8
Unit 2. Sensations
SGK Toán 8 - Chân trời sáng tạo
SBT Toán 8 - Cánh Diều
Bài giảng ôn luyện kiến thức môn Toán lớp 8
SGK Toán 8 - Cánh Diều
VBT Toán 8 - Kết nối tri thức với cuộc sống
SBT Toán 8 - Kết nối tri thức với cuộc sống
SGK Toán 8 - Kết nối tri thức với cuộc sống
Tổng hợp Lí thuyết Toán 8
SBT Toán Lớp 8
Giải bài tập Toán Lớp 8
Tài liệu Dạy - học Toán Lớp 8
Đề thi, đề kiểm tra Toán Lớp 8