PHẦN ĐẠI SỐ - TOÁN 9 TẬP 1

Bài 37 trang 20 sgk Toán 9 - tập 1

Đề bài

Đố: Trên lưới ô vuông, mỗi ô vuông cạnh \(1cm\), cho bốn điểm \(M,\ N,\ P,\ Q\) (h.3).

Hãy xác định số đo cạnh, đường chéo và diện tích của tứ giác \(MNPQ\).

Phương pháp giải - Xem chi tiết

+ Sử dụng định lí Py-ta-go trong tam giác vuông.

+ Công thức tính diện tích hình vuông cạnh \(a\) là: \(S=a^2\).

+ Dấu hiệu nhận biết hình vuông: hình thoi có hai đường chéo bằng nhau (hay tứ giác có bốn cạnh bằng nhau và có hai đường chéo bằng nhau) thì là hình vuông.

Lời giải chi tiết

 

Nối các điểm ta có tứ giác \(MNPQ\)

Tứ giác \(MNPQ\) có:

- Các cạnh bằng nhau và cùng bằng đường chéo của hình chữ nhật có chiều dài \(2cm\), chiều rộng \(1cm\). Do đó theo định lí Py-ta-go, ta có:

\(MN=NP=PQ=QM=\sqrt{2^{2}+1^{2}}=\sqrt{5} (cm)\).

Hay \(MNPQ\) là hình thoi.

- Các đường chéo bằng nhau và cùng bằng đường chéo của hình chữ nhật có chiều dài \(3cm\), chiều rộng \(1cm\) nên theo định lý Py-ta-go ta có độ dài đường chéo là:

\(MP=NQ=\sqrt{3^{2}+1^{2}}=\sqrt{10}(cm).\) 

Như vậy hình thoi \(MNPQ\) có hai đường chéo bằng nhau nên \(MNPQ\) là hình vuông.

Vậy diện tích hình vuông \(MNPQ\) bằng \(MN^{2}=(\sqrt{5})^{2}=5(cm^2)\).

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved