Đề bài
Tại sao trong quặng urani có lẫn chì?
Xác định tuổi của quặng, trong đó cứ \(10\) nguyên tử urani có:
a) \(10\) nguyên tử chì.
b) \(2\) nguyên tử chì.
Phương pháp giải - Xem chi tiết
Sử dụng định luật phóng xạ: Số hạt nhân phóng xạ còn lại sau thời gian \(t\) là \(N = \dfrac{{{N_0}}}{{{2^{\dfrac{t}{T}}}}}\)
Lời giải chi tiết
Sau nhiều lần phóng xạ α và β, urani biến thành chì.
Cứ 1 nguyên tử urani phóng xạ cuối cùng biến thành 1 nguyên tử chì.
+ Số hạt nhân phóng xạ còn lại sau thời gian \(t\) là \(N = \dfrac{{{N_0}}}{{{2^{\dfrac{t}{T}}}}}\)
+ Số hạt nhân bị phóng xạ: \(\Delta N = {N_0} - N = \left( {1 - \dfrac{1}{{{2^{\dfrac{t}{T}}}}}} \right){N_0}\)
Vậy
\(\dfrac{{\Delta N}}{N} = \dfrac{{1 - \dfrac{1}{{{2^{\dfrac{t}{T}}}}}}}{{\dfrac{1}{{{2^{\dfrac{t}{T}}}}}}} = {2^{\dfrac{t}{T}}} - 1\)
a) \(\begin{array}{l}\dfrac{{\Delta N}}{N} = {2^{\dfrac{t}{T}}} - 1 = \dfrac{{10}}{{10}}\\ \Rightarrow {2^{\dfrac{t}{T}}} = 2 \Rightarrow \dfrac{t}{T} = 1 \Rightarrow t = T\end{array}\)
b) \(\begin{array}{l}\dfrac{{\Delta N}}{N} = {2^{\dfrac{t}{T}}} - 1 = \dfrac{2}{{10}}\\ \Rightarrow {2^{\dfrac{t}{T}}} = \dfrac{6}{5} \Rightarrow \dfrac{t}{T} = {\log _2}(\dfrac{6}{5})\\ \Rightarrow t = T{\log _2}(\dfrac{6}{5})\end{array}\)
Bài giảng ôn luyện kiến thức cuối học kì 2 môn Tiếng Anh lớp 12
Unit 6: Future Jobs - Việc Làm Tương Lai
Unit 16 : The Associantion Of Southeast Asian Nations - Hiệp Hội Các Quốc Gia Đông Nam Á
Chương 5. Đại cương về kim loại
Chương 2. Sóng cơ và sóng âm