CHƯƠNG VII. HẠT NHÂN NGUYÊN TỬ

Bài 37.18 trang 113 SBT Vật Lí 12

Đề bài

Tại sao trong quặng urani có lẫn chì?

Xác định tuổi của quặng, trong đó cứ \(10\) nguyên tử urani có:

a) \(10\) nguyên tử chì.

b) \(2\) nguyên tử chì.

Phương pháp giải - Xem chi tiết

Sử dụng định luật phóng xạ: Số hạt nhân phóng xạ còn lại sau thời gian \(t\) là \(N = \dfrac{{{N_0}}}{{{2^{\dfrac{t}{T}}}}}\)

Lời giải chi tiết

Sau nhiều lần phóng xạ α và β, urani biến thành chì.

Cứ 1 nguyên tử urani phóng xạ cuối cùng biến thành 1 nguyên tử chì.

+ Số hạt nhân phóng xạ còn lại sau thời gian \(t\) là \(N = \dfrac{{{N_0}}}{{{2^{\dfrac{t}{T}}}}}\)

+ Số hạt nhân bị phóng xạ: \(\Delta N = {N_0} - N = \left( {1 - \dfrac{1}{{{2^{\dfrac{t}{T}}}}}} \right){N_0}\)

Vậy

\(\dfrac{{\Delta N}}{N} = \dfrac{{1 - \dfrac{1}{{{2^{\dfrac{t}{T}}}}}}}{{\dfrac{1}{{{2^{\dfrac{t}{T}}}}}}} = {2^{\dfrac{t}{T}}} - 1\)

a) \(\begin{array}{l}\dfrac{{\Delta N}}{N} = {2^{\dfrac{t}{T}}} - 1 = \dfrac{{10}}{{10}}\\ \Rightarrow {2^{\dfrac{t}{T}}} = 2 \Rightarrow \dfrac{t}{T} = 1 \Rightarrow t = T\end{array}\)

b) \(\begin{array}{l}\dfrac{{\Delta N}}{N} = {2^{\dfrac{t}{T}}} - 1 = \dfrac{2}{{10}}\\ \Rightarrow {2^{\dfrac{t}{T}}} = \dfrac{6}{5} \Rightarrow \dfrac{t}{T} = {\log _2}(\dfrac{6}{5})\\ \Rightarrow t = T{\log _2}(\dfrac{6}{5})\end{array}\)

 

 
Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved