PHẦN HÌNH HỌC - TOÁN 9 TẬP 2

Bài 39 trang 83 sgk Toán lớp 9 tập 2

Đề bài

Cho \(AB\) và \(CD\) là hai đường kính vuông góc của đường tròn \((O)\). Trên cung nhỏ \(BD\) lấy một điểm \(M\). Tiếp tuyến tại \(M\) cắt tia \(AB\) ở \(E\), đoạn thẳng \(CM\) cắt \(AB\) ở \(S\). Chứng minh \(ES = EM\).

Phương pháp giải - Xem chi tiết

+) Góc có đỉnh nằm ngoài đường tròn có số đo bằng nửa hiệu số đo hai cung bị chắn.

+) Số đo của góc có đỉnh ở bên trong đường tròn bằng nửa tổng số đo hai cung bị chắn.

Lời giải chi tiết

 

                         

Xét đường tròn \((O)\) có hai đường kính \(AB \bot CD\) nên \( \widehat{AOC}=\widehat{BOC}=90^0\) nên \(\overparen{CA}=\overparen{CB}.\)(1)

+) Ta có \( \widehat{MSE}\) là góc có đỉnh nằm trong đường tròn chắn cung \(AC\) và cung \(BM.\)

\(\Rightarrow \widehat{MSE} = \dfrac{sđ\overparen{CA}+sđ\overparen{BM}}{2}\)   (2)

+) \(\widehat{CME} \) là góc tạo bởi tia tiếp tuyến và dây cung chắn cung \(CM\)

\(\Rightarrow \widehat{CME}= \dfrac{sđ\overparen{CM}}{2}= \dfrac{sđ\overparen{CB}+sđ\overparen{BM}}{2}\) (3)

Từ (1), (2), (3) ta có: \(\widehat{MSE} = \widehat{CME}\) nên \(∆ESM\)  cân tại \(E\) và \(ES = EM\) (đpcm).

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved