Bài 4 trang 17

Đề bài

Một con tàu biển M rời cảng O và chuyển động thẳng theo phương tạo với bờ biển một góc \(60^\circ \). Trên bờ biển có hai đài quan sát AB nằm về hai phía so với cảng O và lần lượt cách cảng O khoảng 1km và 2km (Hình 2).

a) Đặt độ dài của MOx km. Biểu diễn khoảng cách từ tàu đến A và từ tàu đến B theo x.

b) Tìm x để khoảng cách từ tàu đến B bằng \(\frac{4}{5}\) khoảng cách từ tàu đến A

c) Tìm x để khoảng cách từ tàu đến B nhỏ hơn khoảng cách từ tàu đến O đúng 500 m.

Lưu ý: Làm tròn kết quả đến hàng phần trăm. 

Phương pháp giải - Xem chi tiết

a) Sử dụng định lý cosin \({a^2} = {b^2} + {c^2} + 2bc\cos A\)

b) Lập phương trình \(MB = \frac{4}{5}MA\), và giải phương trình lập được

c) Lập phương trình \(MB = MO - 0,5\), và giải phương trình lập được

Lời giải chi tiết

a) Đặt độ dài của MOx km \(\left( {x > 0} \right)\)

Ta có: \(\widehat {MOA} + \widehat {MOB} = 180^\circ \) (hai góc bù nhau) \( \Rightarrow \widehat {MOA} = 120^\circ \)

Áp dụng định lý Cosin trong tam giác ta tính được:

+) Khoảng cách từ tàu đến B là \(MB = \sqrt {{x^2} + {2^2} - 2.2.x.\cos 60^\circ }  = \sqrt {{x^2} - 2x + 4} \)

+) Khoảng cách từ tàu đến A là \(MA = \sqrt {{x^2} + {1^2} - 2.1.x.\cos 120^\circ }  = \sqrt {{x^2} + x + 1} \)

b) Theo giải thiết ta có phương trình \(MB = \frac{4}{5}MA \Rightarrow \sqrt {{x^2} - 2x + 4}  = \frac{4}{5}\sqrt {{x^2} + x + 1} \)

\(\begin{array}{l} \Rightarrow {x^2} - 2x + 4 = \frac{{16}}{{25}}\left( {{x^2} + x + 1} \right)\\ \Rightarrow \frac{9}{{25}}{x^2} - \frac{{66}}{{25}}x + \frac{{84}}{{25}} = 0\end{array}\)

\( \Rightarrow x \simeq 1,64\) và \(x \simeq 5,69\)

Thay hai nghiệm vừa tìm được vào phương trình \(\sqrt {{x^2} - 2x + 4}  = \frac{4}{5}\sqrt {{x^2} + x + 1} \) ta thấy cả hai nghiệm đều thỏa mãn phương trình

Vậy khi  \(x \simeq 1,64\) hoặc \(x \simeq 5,69\) thì khoảng cách từ tàu đến B bằng \(\frac{4}{5}\) khoảng cách từ tàu đến A

c) Đổi 500 m = 0,5 km

Theo giả thiết ta có phương trình sau:

\(\begin{array}{l}MB = MO - 0,5 \Rightarrow \sqrt {{x^2} - 2x + 4}  = x - 0,5\\ \Rightarrow {x^2} - 2x + 4 = {\left( {x - 0,5} \right)^2}\\ \Rightarrow {x^2} - 2x + 4 = {x^2} - x + \frac{1}{4}\\ \Rightarrow x = \frac{{15}}{4}\end{array}\)

Thay \(x = \frac{{15}}{4}\) vào phương trình \(\sqrt {{x^2} - 2x + 4}  = x - 0,5\) ta thấy thỏa mãn phương trình

Vậy khi \(x = \frac{{15}}{4}\) thì khoảng cách từ tàu đến B nhỏ hơn khoảng cách từ tàu đến O đúng 500 m.

 
Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved