ĐẠI SỐ VÀ GIẢI TÍCH - TOÁN 11

Bài 4 trang 37 SGK Đại số và Giải tích 11

Lựa chọn câu hỏi để xem giải nhanh hơn
LG a
LG b
LG c
LG d

Giải các phương trình sau:

Lựa chọn câu hỏi để xem giải nhanh hơn
LG a
LG b
LG c
LG d

LG a

\(2si{n^2}x{\rm{ }} + {\rm{ }}sinxcosx{\rm{ }} - {\rm{ }}3co{s^2}x{\rm{ }} = {\rm{ }}0\);

Phương pháp giải:

Phương trình: \(a{\sin ^2}x + b\sin x\cos x + c{\cos ^2}x = d\)

TH 1: Xét \(\cos x = 0\) có là nghiệm của phương trình hay không?

TH 2: Khi \(\cos x \ne 0\).

+ Bước 1: Chia cả 2 vế của phương trình cho \({\cos ^2}x\)

Ta được: \(a\frac{{{{\sin }^2}x}}{{{{\cos }^2}x}} + b\frac{{\sin x}}{{\cos x}} + c = \frac{d}{{{{\cos }^2}x}}\)

-Vì \(\tan x = \frac{{\sin x}}{{\cos x}};\,\,\frac{1}{{{{\cos }^2}x}} = {\tan ^2}x + 1\) nên ta đưa phương trình về dạng:

\(\begin{array}{l}
\,\,\,\,\,a{\tan ^2}x + b\tan x + c = d\left( {1 + {{\tan }^2}x} \right)\\
\Leftrightarrow \left( {a - d} \right){\tan ^2}x + b\tan x + c - d = 0
\end{array}\)

+ Bước 2: Đặt \(t=tanx\), giải phương trình bậc hai ẩn t và tìm các nghiệm t.

+ Bước 3: Giải phương trình lượng giác cơ bản của tan: \(\tan x = \tan \alpha  \Leftrightarrow x = \alpha  + k\pi \,\,\left( {k \in Z} \right)\) và đối chiếu với điều kiện.

Lời giải chi tiết:

\(2{\sin ^2}x + \sin x\cos x - 3{\cos ^2}x = 0\)

+ TH1: \(\cos x = 0 \Leftrightarrow {\sin ^2}x = 1\), khi đó ta có \(2.1 + 0 - 0 = 0\) (vô nghiệm)

\( \Rightarrow \cos x \ne 0 \Rightarrow x \ne {\pi  \over 2} + k\pi \,\,\left( {k \in Z} \right)\)

+ TH2: Chia cả hai vế của phương trình cho \({\cos ^2}x\) ta được:

\(2{{{{\sin }^2}x} \over {{{\cos }^2}x}} + {{\sin x} \over {\cos x}} - 3 = 0 \Leftrightarrow 2{\tan ^2}x + \tan x - 3 = 0\)

Đặt \(t = \tan x,\) khi đó phương trình trở thành: \(2{t^2} + t - 3 = 0 \Leftrightarrow \left[ \matrix{  t = 1 \hfill \cr   t =  - {3 \over 2} \hfill \cr}  \right.\)

Với \(t = 1 \Leftrightarrow \tan x = 1 \Leftrightarrow x = {\pi  \over 4} + k\pi \,\,\left( {k \in Z} \right)\,\,\,\left( {tm} \right)\)

Với \(t =  - {3 \over 2} \Rightarrow \tan x =  - {3 \over 2}\)

\(\Leftrightarrow x = \arctan \left( { - {3 \over 2}} \right) + k\pi \,\,\left( {k \in Z} \right)\,\,\left( {tm} \right)\)

Vậy nghiệm của phương trình là \(x = {\pi  \over 4} + k\pi \,\,\left( {k \in Z} \right)\) hoặc \(x = \arctan \left( { - {3 \over 2}} \right) + k\pi \,\,\left( {k \in Z} \right)\).

LG b

\(3si{n^2}x{\rm{ }} - {\rm{ }}4sinxcosx{\rm{ }} + {\rm{ }}5co{s^2}x{\rm{ }} = {\rm{ }}2\);

Lời giải chi tiết:

\(3{\sin ^2}x - 4\sin x\cos x + 5{\cos ^2}x = 2\)

Khi \(\cos x = 0 \Leftrightarrow {\sin ^2}x = 1\), khi đó ta có \(3.1 - 0 + 0 = 2\) (vô nghiệm)

\( \Rightarrow \cos x \ne 0 \Rightarrow x \ne {\pi  \over 2} + k\pi \,\,\left( {k \in Z} \right)\)

Chia cả hai vế của phương trình cho \({\cos ^2}x\) ta được:

\(\eqalign{  & \,\,\,\,\,\,3{{{{\sin }^2}x} \over {{{\cos }^2}x}} - 4{{\sin x} \over {\cos x}} + 5 = {2 \over {{{\cos }^2}x}}  \cr   &  \Leftrightarrow 3{\tan ^2}x - 4\tan x + 5 = 2\left( {{{\tan }^2}x + 1} \right)  \cr   &  \Leftrightarrow {\tan ^2}x - 4\tan x + 3 = 0 \cr} \)

Đặt \(t = \tan x,\) khi đó phương trình trở thành: \({t^2} - 4t + 3 = 0 \Leftrightarrow \left[ \matrix{  t = 1 \hfill \cr   t = 3 \hfill \cr}  \right.\)

Với \(t = 1 \Leftrightarrow \tan x = 1 \)

\(\Leftrightarrow x = {\pi  \over 4} + k\pi \,\,\left( {k \in Z} \right)\,\,\,\left( {tm} \right)\)

Với \(t = 3 \Rightarrow \tan x = 3 \)

\(\Leftrightarrow x = \arctan 3 + k\pi \,\,\left( {k \in Z} \right)\,\,\left( {tm} \right)\)

Vậy nghiệm của phương trình là \(x = {\pi  \over 4} + k\pi \,\,\left( {k \in Z} \right)\) hoặc \(x = \arctan 3 + k\pi \,\,\left( {k \in Z} \right)\).

Cách 2:

Ta có thể đưa về cùng dạng với câu a, như sau:

\(\begin{array}{l}
3{\sin ^2}x - 4\sin x\cos x + 5{\cos ^2}x = 2\\
\Leftrightarrow 3{\sin ^2}x - 4\sin x\cos x + 5{\cos ^2}x = 2\left( {{{\sin }^2}x + {{\cos }^2}x} \right)\\
\Leftrightarrow 3{\sin ^2}x - 4\sin x\cos x + 5{\cos ^2}x = 2{\sin ^2}x + 2{\cos ^2}x\\
\Leftrightarrow {\sin ^2}x - 4\sin x\cos x + 3{\cos ^2}x = 0
\end{array}\)

Sau đó giải phương trình tương tự như câu .

LG c

\(si{n^2}x{\rm{ }} + {\rm{ }}sin2x{\rm{ }} - {\rm{ }}2co{s^2}x{\rm{ }} = {1 \over 2}\) ;

Lời giải chi tiết:

\(\eqalign{  & \,\,{\sin ^2}x + \sin 2x - 2{\cos ^2}x = {1 \over 2}\cr& \Leftrightarrow {\sin ^2}x + 2\sin x\cos x - 2{\cos ^2}x = {1 \over 2}  \cr   &  \Leftrightarrow 2{\sin ^2}x + 4\sin x\cos x - 4{\cos ^2}x = 1 \cr} \)

+TH1: \(\cos x = 0 \Leftrightarrow {\sin ^2}x = 1\), khi đó ta có \(2 + 0 - 0 = 1\) (vô nghiệm)

\( \Rightarrow \cos x \ne 0 \Rightarrow x \ne {\pi  \over 2} + k\pi \,\,\left( {k \in Z} \right)\)

+TH2: Chia cả hai vế của phương trình cho \({\cos ^2}x\) ta được:

\(\eqalign{  & \,\,\,\,\,\,2{{{{\sin }^2}x} \over {{{\cos }^2}x}} + 4{{\sin x} \over {\cos x}} - 4 = {1 \over {{{\cos }^2}x}}  \cr   &  \Leftrightarrow 2{\tan ^2}x + 4\tan x - 4 = {\tan ^2}x + 1  \cr   &  \Leftrightarrow {\tan ^2}x + 4\tan x - 5 = 0 \cr} \)

Đặt \(t = \tan x,\) khi đó phương trình trở thành: \({t^2} + 4t - 5 = 0 \Leftrightarrow \left[ \matrix{  t = 1 \hfill \cr   t =  - 5 \hfill \cr}  \right.\)

Với \(t = 1 \Leftrightarrow \tan x = 1 \Leftrightarrow x = {\pi  \over 4} + k\pi \,\,\left( {k \in Z} \right)\,\,\,\left( {tm} \right)\)

Với \(t =  - 5 \Rightarrow \tan x =  - 5\)

\(\Leftrightarrow x = \arctan \left( { - 5} \right) + k\pi \,\,\left( {k \in Z} \right)\,\,\left( {tm} \right)\)

Vậy nghiệm của phương trình là \(x = {\pi  \over 4} + k\pi \,\,\left( {k \in Z} \right)\) hoặc \(x = \arctan \left( { - 5} \right) + k\pi \,\,\left( {k \in Z} \right)\).

Cách 2:

\(\begin{array}{l}
{\sin ^2}x + \sin 2x - 2{\cos ^2}x = \frac{1}{2}\\
\Leftrightarrow 2{\sin ^2}x + 2\sin 2x - 4{\cos ^2}x = 1\\
\Leftrightarrow 2{\sin ^2}x + 2.2\sin x\cos x - 4{\cos ^2}x = {\sin ^2}x + {\cos ^2}x\\
\Leftrightarrow {\sin ^2}x + 4\sin x\cos x - 5{\cos ^2}x = 0
\end{array}\)

Sau đó thực hiện giải câu hỏi như câu a.

LG d

\(2co{s^2}x{\rm{ }} - {\rm{ }}3\sqrt 3 sin2x{\rm{ }} - {\rm{ }}4si{n^2}x{\rm{ }} = {\rm{ }} - 4\).

Lời giải chi tiết:

\(\eqalign{  & \,\,2{\cos ^2}x - 3\sqrt 3 \sin 2x - 4{\sin ^2}x =  - 4  \cr   &  \Leftrightarrow 2{\cos ^2}x - 6\sqrt 3 \sin x\cos x - 4{\sin ^2}x =  - 4 \cr} \)

Khi \(\cos x = 0 \Leftrightarrow {\sin ^2}x = 1\), khi đó ta có \(0 + 0 - 4 =  - 4 \Rightarrow x = {\pi  \over 2} + k\pi \,\,\left( {k \in Z} \right)\) là nghiệm của phương trình.

Khi \(\cos x \ne 0 \Rightarrow x \ne {\pi  \over 2} + k\pi \,\,\left( {k \in Z} \right)\)

Chia cả hai vế của phương trình cho \({\cos ^2}x\) ta được:

\(\eqalign{  & \,\,\,\,\,\,2 - 6\sqrt 3 {{\sin x} \over {\cos x}} - 4{{{{\sin }^2}x} \over {{{\cos }^2}x}} = {{ - 4} \over {{{\cos }^2}x}}  \cr   &  \Leftrightarrow 2 - 6\sqrt 3 \tan x - 4{\tan ^2}x =  - 4{\tan ^2}x - 4  \cr   &  \Leftrightarrow 6\sqrt 3 \tan x = 6  \cr   &  \Leftrightarrow \tan x = {1 \over {\sqrt 3 }}  \cr   &  \Leftrightarrow x = {\pi  \over 6} + k\pi \,\,\left( {k \in Z} \right) \cr} \)

Vậy nghiệm của phương trình là \(x = {\pi  \over 2} + k\pi \,\,\left( {k \in Z} \right)\) hoặc \(x = {\pi  \over 6} + k\pi \,\,\left( {k \in Z} \right)\).

Cách 2:

\(\begin{array}{l}
2{\cos ^2}x - 3\sqrt 3 \sin 2x - 4{\sin ^2}x = - 4\\
\Leftrightarrow 2{\cos ^2}x - 3\sqrt 3 .2\sin x\cos x - 4{\sin ^2}x = - 4\left( {{{\sin }^2}x + {{\cos }^2}x} \right)\\
\Leftrightarrow 2{\cos ^2}x - 6\sqrt 3 \sin x\cos x - 4{\sin ^2}x = - 4{\sin ^2}x - 4{\cos ^2}x\\
\Leftrightarrow 6{\cos ^2}x - 6\sqrt 3 \sin x\cos x = 0\\
\Leftrightarrow 6\cos x\left( {\cos x - \sqrt 3 \sin x} \right) = 0\\
\Leftrightarrow \left[ \begin{array}{l}
\cos x = 0\\
\cos x - \sqrt 3 \sin x = 0
\end{array} \right.\\
\Leftrightarrow \left[ \begin{array}{l}
\cos x = 0\\
\cos x = \sqrt 3 \sin x
\end{array} \right.\\
\Leftrightarrow \left[ \begin{array}{l}
\cos x = 0\\
\frac{{\cos x}}{{\sin x}} = \sqrt 3
\end{array} \right.\\
\Leftrightarrow \left[ \begin{array}{l}
\cos x = 0\\
\cot x = \sqrt 3
\end{array} \right.\\
\Leftrightarrow \left[ \begin{array}{l}
x = \frac{\pi }{2} + k\pi \\
x = \frac{\pi }{6} + k\pi
\end{array} \right.
\end{array}\)

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved