Đề bài
Tìm số hạng không chứa \(x\) trong khai triển của \(\displaystyle{\left( {{x^3} + {1 \over x}} \right)^8}\)
Phương pháp giải - Xem chi tiết
Sử dụng công thức số hạng tổng quát trong khai triển nhị thức Newton:
\[{T_{k + 1}} = C_n^k{a^{n - k}}{b^k}\]
Sử dụng các công thức nhân, chia lũy thừa cùng cơ số: \({x^m}.{x^n} = {x^{m + n}};\,\,\dfrac{{{x^m}}}{{{x^n}}} = {x^{m - n}}\).
Để tìm hệ số của số hạng không chứa \(x\) ta cho số mũ của x bằng 0, giải phương trình tìm \(k\)
Lời giải chi tiết
Số hạng tổng quát:
\(\begin{array}{l}{T_{k + 1}} = C_8^k.{\left( {{x^3}} \right)^{8 - k}}.{\left( {\dfrac{1}{x}} \right)^k}\\ = C_8^k.{x^{24 - 3k}}.\dfrac{1}{{{x^k}}}\\ = C_8^k{x^{24 - 3k - k}}\\ = C_8^k{x^{24 - 4k}}\end{array}\)
Số hạng không chứa \(x\) ứng với \(24 - 4k = 0 \Leftrightarrow 4k = 24 \Leftrightarrow k = 6\)
Vậy số hạng không chứa \(x\) trong khai triển \({\left( {{x^3} + \dfrac{1}{x}} \right)^8}\) là \(C_8^6 = 28\).
SGK Ngữ văn 11 - Chân trời sáng tạo tập 1
Chuyên đề II. Truyền thông tin bằng sóng vô tuyến
Chương 1: Dao động
Tải 20 đề kiểm tra 15 phút - Chương 2
Tải 10 đề kiểm tra 1 tiết - Chương 3
SBT Toán Nâng cao Lớp 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Nâng cao Lớp 11