1. Nội dung câu hỏi
Tính đạo hàm cấp hai của mỗi hàm số sau:
a) \(y = 2{x^4} - 3{x^3} + 5{x^2}\).
b) \(y = \frac{2}{{3 - x}}\).
c) \(y = \sin 2x\cos x\).
d) \(y = {e^{ - 2x + 3}}\).
e) \(y = \ln (x + 1)\).
f) \(y = \ln ({e^x} + 1)\).
2. Phương pháp giải
Dựa vào định nghĩa đạo hàm cấp hai để tính.
3. Lời giải chi tiết
\(\begin{array}{l}y = 2{x^4} - 3{x^3} + 5{x^2} \Rightarrow y' = 8{x^3} - 9{x^2} + 10x\\ \Rightarrow y'' = 24{x^2} - 18x + 10\end{array}\).
b,
\(\begin{array}{l}y = \frac{2}{{3 - x}} \Rightarrow y' = \frac{{ - 6}}{{{{\left( {3 - x} \right)}^2}}}\\ \Rightarrow y'' = \frac{{ - 6\left( {{{\left( {3 - x} \right)}^2}} \right)'}}{{{{\left( {3 - x} \right)}^4}}} = \frac{{ - 6.\left( { - 1} \right).\left( {3 - x} \right)}}{{{{\left( {3 - x} \right)}^4}}} = \frac{6}{{{{\left( {3 - x} \right)}^3}}}\end{array}\).
c,
\(\begin{array}{l}y = \sin 2x\cos x\\ \Rightarrow y' = 2\cos 2x.\cos x - \sin 2x.\sin x = 2.\frac{1}{2}\left( {\cos 3x + \cos x} \right) + \frac{1}{2}\left( {\cos 3x - \cos x} \right)\\ = \frac{3}{2}\cos 3x + \frac{1}{2}\cos x\\ \Rightarrow y'' = - \frac{3}{2}.3.\sin 3x - \frac{1}{2}\sin x = - \frac{9}{2}\sin 3x - \frac{1}{2}\sin x\end{array}\).
d,
\(y = {e^{ - 2x + 3}} \Rightarrow y' = - 2{e^{ - 2x + 3}} \Rightarrow y'' = 4.{e^{ - 2x + 3}}\).
e,
\(y = \ln (x + 1) \Rightarrow y' = \frac{1}{{x + 1}} \Rightarrow y'' = - \frac{1}{{{{\left( {x + 1} \right)}^2}}}\).
f,
\(y = \ln ({e^x} + 1) \Rightarrow y' = \frac{{{e^x}}}{{{e^x} + 1}} \Rightarrow y'' = - \frac{{{e^x}.{e^x}}}{{{{\left( {{e^x} + 1} \right)}^2}}} = - \frac{{{e^{2x}}}}{{{{\left( {{e^x} + 1} \right)}^2}}}\).
Skills (Units 7 - 8)
Chủ đề 2. Chủ nghĩa xã hội từ năm 1917 đến nay
Chương 6: Hợp chất carbonyl (Aldehyde - Ketone) - Carboxylic acid
Chủ đề 2. Cảm ứng ở sinh vật
Bài giảng ôn luyện kiến thức cuối học kì 1 môn Sinh học lớp 11
SBT Toán Nâng cao Lớp 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Nâng cao Lớp 11
SGK Toán Lớp 11