PHẦN HÌNH HỌC - TOÁN 8 TẬP 2

Bài 41 trang 121 sgk toán lớp 8 - tập 2

Lựa chọn câu hỏi để xem giải nhanh hơn
LG a.
LG b.
LG c.

Vẽ cắt và gấp miếng bìa như đã chỉ ra ở hình 125 để được hình chóp tứ giác đều.

Lựa chọn câu hỏi để xem giải nhanh hơn
LG a.
LG b.
LG c.

LG a.

LG a.

Trong hình 125a, có bao nhiêu tam giác cân bằng nhau?

Phương pháp giải:

Áp dụng: Định nghĩa chóp tứ giác đều 

Lời giải chi tiết:

Trong hình 125a có 4 tam giác cân bằng nhau.

LG b.

LG b.

Sử dụng định lí Pitago để tính chiều cao ứng với đáy của mỗi tam giác.

Phương pháp giải:

Áp dụng: Định lý Py-ta-go 

Lời giải chi tiết:

Đặt tên cho 1 mặt bên như hình vẽ: 

Gọi H là chân đường cao hạ từ A xuống BC, mà tam giác ABC cân tại A nên AH vừa là đường cao vừa là đường trung tuyến. 

Do đó \(HC=BC:2=\dfrac{5}{2}cm\)

Xét tam giác AHC vuông tại H, theo định lý Py-ta-go ta có:

 \(AH = \sqrt{AC^{2}- HC^{2}}\)

 \(= \sqrt{10^{2}- {\left( {\dfrac{5}{2}} \right)^2}} = \sqrt{100-\dfrac{25}{4}} \)

 \(\approx  9,68\) \(cm\)  

 

LG c.

LG c.

Diện tích xung quanh và diện tích toàn phần của hình chóp đều này là bao nhiêu ?

Phương pháp giải:

Áp dụng:

- Diện tích xung quanh của hình chóp đều bằng tích của nửa chu vi đáy với trung đoạn. 

- Công thức tính diện tích toàn phần: \( S_ {tp} = S_{xq}+ S_{đ}\)

Lời giải chi tiết:

Chu vi đáy của hình chóp là \(4.5 = 20 (cm).\) 

Diện tích xung quanh hình chóp:

        \(S_{xq} = p. d =\dfrac{1}{2}.20.9,68 = 96,8\) \( (cm^2) \) 

Diện tích đáy:

        \( S_{đ} = 5^2 = 25 (cm^2) \) 

Diện tích toàn phần của hình chóp:

        \( S_ {tp} = S_{xq}+ S_{đ} = 96,8 + 25 = 121,8\) \((cm^2) \)

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved