Bài 1. Góc ở tâm. Số đo cung
Bài 2. Liên hệ giữa cung và dây
Bài 3. Góc nội tiếp
Bài 4. Góc tạo bởi tia tiếp tuyến và dây cung
Bài 5. Góc có đỉnh ở bên trong đường tròn. Góc có đỉnh ở bên ngoài đường tròn
Bài 6. Cung chứa góc
Bài 7. Tứ giác nội tiếp
Bài 8. Đường tròn ngoại tiếp. Đường tròn nội tiếp
Bài 9. Độ dài đường tròn, cung tròn
Bài 10. Diện tích hình tròn, hình quạt tròn
Ôn tập chương III – Góc với đường tròn
Đề kiểm tra 15 phút - Chương 3 - Hình học 9
Đề kiểm tra 45 phút (1 tiết) - Chương 3 - Hình học 9
Bài 1. Hình trụ - Diện tích xung quanh và thể tích hình trụ
Bài 2. Hình nón - Hình nón cụt - Diện tích xung quanh và thể tích của hình nón, hình nón cụt
Bài 3. Hình cầu. Diện tích hình cầu và thể tích hình cầu
Ôn tập chương IV – Hình trụ - Hình nón – Hình cầu
Đề kiểm tra 45 phút (1 tiết) - Chương 4 - Hình học 9
Đề bài
Cho ba điểm \(A, O, B\) thẳng hàng theo thứ tự đó, \(OA = a, OB = b\) (\(a,b\) cùng đơn vị: cm).
Qua \(A\) và \(B\) vẽ theo thứ tự các tia \(Ax\) và \(By\) cùng vuông góc với \(AB\) và cùng phía với \(AB\). Qua \(O\) vẽ hai tia vuông gaóc với nhau và cắt \(Ax\) ở \(C\), \(By\) ở \(D\) (xem hình 116).
a) Chứng minh \(AOC\) và \(BDO\) là hai tam giác đồng dạng; từ đó suy ra tích \(AC.BD\) không đổi.
b) Tính diện tích hình thang \(ABDC\) khi \(\widehat {COA} = {60^0}\)
c) Với \(\widehat {COA} = {60^0}\) cho hình vẽ quay xung quanh \(AB\). Hãy tính tỉ số tích các hình do các tam giác \(AOC\) và \(BOD\) tạo thành
Phương pháp giải - Xem chi tiết
a) Hai tam giác có hai cặp góc tương ứng bằng nhau thì hai tam giác đó đồng dạng.
b) Công thức tính diện tích hình thang có đáy lớn là \(a,\) đáy nhỏ là \(b\) và chiều cao \(h\) là: \(S = \dfrac{{\left( {a + b} \right)h}}{2}.\)
c) Thể tích hình nón: \( V = \dfrac{1}{3}\pi {r^2}h.\)
Lời giải chi tiết
a) Xét hai tam giác vuông \(AOC\) và \(BDO\) ta có: \(\widehat A = \widehat B = {90^0}\)
\(\widehat {AOC} = \widehat {B{\rm{D}}O}\) (cùng phụ với \(\widehat{BOD}\)).
Vậy \(∆AOC\) đồng dạng \(∆BDO \, \, (g-g).\)
\( \displaystyle \Rightarrow {{AC} \over {AO}} = {{BO} \over {B{\rm{D}}}}\) (2 cặp cạnh tương ứng tỉ lệ) \( \displaystyle\Rightarrow {{AC} \over a} = {b \over {B{\rm{D}}}}\) (1)
Vậy \(AC . BD = a . b \) không đổi.
b) Khi \(\widehat {COA} = 60^\circ \) , xét tam giác vuông \(ACO\) ta có \(\tan \widehat {AOC} = \dfrac{{AC}}{{OA}} \Rightarrow \tan 60^\circ = \dfrac{{AC}}{a} \Rightarrow AC = a\sqrt 3 \)
mà \(AC.BD = ab\) (câu a) nên \(a\sqrt 3 .BD = ab \Rightarrow BD = \dfrac{{b\sqrt 3 }}{3}\)
Ta có công thức tính diện tích hình thang \(ABCD\) là:
\(\eqalign{
& S = {{AC + B{\rm{D}}} \over 2}.AB = \displaystyle {{a\sqrt 3 + {{b\sqrt 3 } \over 3}} \over 2}.\left( {a + b} \right) \cr
& = {{\sqrt 3 } \over 6}\left( {3{{\rm{a}}^2} + 4{\rm{a}}b + {b^2}} \right)\left( {c{m^2}} \right) \cr} \)
c) Theo đề bài ta có:
Tam giác \(AOC\) khi quay quanh cạnh \(AB\) tạo thành hình nón có chiều cao \(OA = a\) và bán kính đáy \(AC = a\sqrt 3 \) nên thể tích hình nón là \({V_1} = \dfrac{1}{3}\pi .OA.A{C^2} = \dfrac{1}{3}\pi .a.{\left( {a\sqrt 3 } \right)^2} = \pi {a^3}\left( {c{m^3}} \right)\)
Tam giác \(BOD\) khi quay quanh cạnh \(AB\) tạo thành hình nón có chiều cao \(OB = b\) và bán kính đáy \(BD = \dfrac{{b\sqrt 3 }}{3}\) nên thể tích hình nón là \({V_2} = \dfrac{1}{3}\pi .OB.B{D^2} = \dfrac{1}{3}\pi .b.{\left( {\dfrac{{b\sqrt 3 }}{3}} \right)^2} = \dfrac{{\pi {b^3}}}{9}\left( {c{m^3}} \right)\)
Do đó \(\dfrac{{{V_1}}}{{{V_2}}} = \dfrac{{\pi {a^3}}}{{\dfrac{{\pi {b^3}}}{9}}} = \dfrac{{9{a^3}}}{{{b^3}}}\)
Bài 11. Các nhân tố ảnh hưởng đến sự phát triển và phân bố công nghiệp
Đề thi vào 10 môn Anh Hải Dương
Bài 28. Vùng Tây Nguyên
Đề thi học kì 2
ĐỀ KIỂM TRA HỌC KÌ 2 (ĐỀ THI HỌC KÌ 2) - VẬT LÍ 9