Bài 1. Góc ở tâm. Số đo cung
Bài 2. Liên hệ giữa cung và dây
Bài 3. Góc nội tiếp
Bài 4. Góc tạo bởi tia tiếp tuyến và dây cung
Bài 5. Góc có đỉnh ở bên trong đường tròn. Góc có đỉnh ở bên ngoài đường tròn
Bài 6. Cung chứa góc
Bài 7. Tứ giác nội tiếp
Bài 8. Đường tròn ngoại tiếp. Đường tròn nội tiếp
Bài 9. Độ dài đường tròn, cung tròn
Bài 10. Diện tích hình tròn, hình quạt tròn
Ôn tập chương III – Góc với đường tròn
Đề kiểm tra 15 phút - Chương 3 - Hình học 9
Đề kiểm tra 45 phút (1 tiết) - Chương 3 - Hình học 9
Bài 1. Hình trụ - Diện tích xung quanh và thể tích hình trụ
Bài 2. Hình nón - Hình nón cụt - Diện tích xung quanh và thể tích của hình nón, hình nón cụt
Bài 3. Hình cầu. Diện tích hình cầu và thể tích hình cầu
Ôn tập chương IV – Hình trụ - Hình nón – Hình cầu
Đề kiểm tra 45 phút (1 tiết) - Chương 4 - Hình học 9
Đề bài
Qua điểm \(A\) nằm bên ngoài đường tròn \((O)\) vẽ hai cát tuyến \(ABC\) và \(AMN\) sao cho hai đường thẳng \(BN\) và \(CM\) cắt nhau tại một điểm \(S\) nằm bên trong đường tròn.
Chứng minh: \(\widehat A + \widehat {BSM} = 2\widehat {CMN}.\)
Phương pháp giải - Xem chi tiết
+) Góc có đỉnh nằm ngoài đường tròn có số đo bằng nửa hiệu số đo hai cung bị chắn.
+) Số đo của góc có đỉnh ở bên trong đường tròn bằng nửa tổng số đo hai cung bị chắn.
+) Số đo của góc nội tiếp bằng nửa số đo cung bị chắn.
Lời giải chi tiết
Xét đường tròn \((O)\) có:
+) \(\widehat A\) là góc có đỉnh nằm ngoài đường tròn \((O)\) chắn cung \(CN\) và \(BM\) \(\Rightarrow \widehat A = \dfrac{sđ\overparen{CN}-sđ\overparen{BM}}{2}\) (1)
+) \(\widehat {BSM}\) là góc có đỉnh nằm trong đường tròn \((O)\) chắn cung \(CN\) và \(BM\) \(\Rightarrow \widehat {BSM}=\dfrac{sđ\overparen{CN}+sđ\overparen{BM}}{2}\) (2)
Cộng (1) và (2) theo vế với vế:
\(\widehat{A}\)+\(\widehat {BSM}\)\(=\dfrac{2sđ\overparen{CN}+(sđ\overparen{BM}-sđ\overparen{BM)}}{2}=sđ \overparen{CN}\) (3)
Mà \(\widehat {CMN}\) là góc nội tiếp chắn cung \(CN\) \(\Rightarrow \widehat {CMN}=\dfrac{sđ\overparen{CN}}{2}\)
\(\Leftrightarrow\) \(2\widehat {CMN}=sđ\overparen{CN}\). (4)
Từ (3) và (4) ta được: \(\widehat A + \widehat {BSM} = 2\widehat {CMN}\) (đpcm).
Unit 8: Tourism
Đề thi vào 10 môn Anh Nghệ An
TÀI LIỆU DẠY - HỌC HÓA 9 TẬP 1
Bài 2: Tự chủ
PHẦN DI TRUYỀN VÀ BIẾN DỊ