PHẦN HÌNH HỌC - TOÁN 8 TẬP 1

Bài 44 trang 133 SGK Toán 8 tập 1

Đề bài

Gọi \(O\) là điểm nằm trong hình bình hành \(ABCD.\) Chứng minh rằng tổng diện tích của hai tam giác \(ABO\) và \(CDO\) bằng tổng diện tích của hai tam giác \(BCO\) và \(DAO.\)

Phương pháp giải - Xem chi tiết

Áp dụng công thức tính diện tích tam giác, diện tích hình bình hành.

Lời giải chi tiết

 

Từ \(O\) kẻ đường thẳng \(d\) vuông góc với \(AB\) ở \({H_1}\), cắt \(CD\) ở \({H_2}.\)

Ta có \(O{H_1} ⊥ AB\) (theo cách vẽ)

Mà \(AB // CD\) (vì \(ABCD\) là hình bình hành)

Nên \(O{H_2}  ⊥ CD\)

Do đó  \({S_{ABO}} + {S_{CDO}} \)

\( = \dfrac{1}{2}O{H_1}.AB + \dfrac{1}{2}O{H_2}.CD\)

\( = \dfrac{1}{2}O{H_1}.AB + \dfrac{1}{2}O{H_2}.AB\) (vì \(AB=CD\)) 

\(= \dfrac{1}{2}AB\left( {O{H_1} + O{H_2}} \right)\) 

\(= \dfrac{1}{2}.AB.{H_1}{H_2}\)

\( \Rightarrow {S_{ABO}} + {S_{CDO}} = \dfrac{1}{2}{S_{ABCD}}\)    ( 1) (do \(S_{ABCD}=H_1H_2.AB)\)

Mà  \({S_{BCO}} + {S_{DAO}}+{S_{ABO}} + {S_{CDO}} ={S_{ABCD}}\)

Suy ra  \({S_{BCO}} + {S_{DAO}} = \dfrac{1}{2}{S_{ABCD}}\)    (2)

Từ (1) và (2) suy ra:

 \({S_{ABO}} + {S_{CDO}} = {S_{BCO}} + {S_{DAO}}\)

 

 
Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved