Bài 1. Căn bậc hai
Bài 2. Căn thức bậc hai và hằng đẳng thức
Bài 3. Liên hệ giữa phép nhân và phép khai phương
Bài 4. Liên hệ giữa phép chia và phép khai phương
Bài 5. Bảng Căn bậc hai
Bài 6. Biến đổi đơn giản biểu thức chứa căn thức bậc hai
Bài 7. Biến đổi đơn giản biểu thức chứa căn thức bậc hai (tiếp theo)
Bài 8. Rút gọn biểu thức chứa căn bậc hai
Bài 9. Căn bậc ba
Ôn tập chương I – Căn bậc hai. Căn bậc ba
Đề kiểm tra 15 phút - Chương I - Đại số 9
Đề kiểm tra 45 phút (1 tiết) - Chương I - Đại số 9
Bài 1. Nhắc lại và bổ sung các khái niệm về hàm số
Bài 2. Hàm số bậc nhất
Bài 3. Đồ thị của hàm số y = ax + b (a ≠ 0)
Bài 4. Đường thẳng song song và đường thẳng cắt nhau
Bài 5. Hệ số góc của đường thẳng y = ax + b (a ≠ 0).
Ôn tập chương II – Hàm số bậc nhất
Đề kiểm tra 15 phút - Chương 2 - Đại số 9
Đề kiểm tra 45 phút (1 tiết) - Chương 2 - Đại số 9
Rút gọn các biểu thức sau với \(x\geq 0\):
LG a
LG a
\(2\sqrt{3x}-4\sqrt{3x}+27-3\sqrt{3x}\)
Phương pháp giải:
Sử dụng quy tắc đưa thừa số ra ngoài dấu căn:
Với hai biểu thức \(A,\ B\) mà \(B \ge 0\), ta có \(\sqrt{A^2.B}=|A|\sqrt{B}\), tức là:
\(\sqrt{A^2.B}=A\sqrt{B}\), nếu \(A \ge 0\).
\(\sqrt{A^2.B}=-A\sqrt{B}\), nếu \(A < 0\).
Lời giải chi tiết:
Ta có: \(2\sqrt{3x}-4\sqrt{3x}+27-3\sqrt{3x}\)
\(= (2\sqrt{3x}-4\sqrt{3x}-3\sqrt{3x})+27\)
\(=(2-4-3)\sqrt{3x}+27\)
\(=-5\sqrt{3x}+27\).
LG b
LG b
\(3\sqrt{2x}-5\sqrt{8x}+7\sqrt{18x}+28\)
Phương pháp giải:
Sử dụng quy tắc đưa thừa số ra ngoài dấu căn:
Với hai biểu thức \(A,\ B\) mà \(B \ge 0\), ta có \(\sqrt{A^2.B}=|A|\sqrt{B}\), tức là:
\(\sqrt{A^2.B}=A\sqrt{B}\), nếu \(A \ge 0\).
\(\sqrt{A^2.B}=-A\sqrt{B}\), nếu \(A < 0\).
Lời giải chi tiết:
Dùng phép đưa thừa số ra ngoài dấu căn để có những căn thức giống nhau là \(\sqrt{2x}\).
Ta có:
\(3\sqrt{2x}-5\sqrt{8x}+7\sqrt{18x}+28\)
\(=3\sqrt{2x}-5\sqrt{4.2x}+7\sqrt{9.2x}+28\)
\(=3\sqrt{2x}-5\sqrt{2^2.2x}+7\sqrt{3^2.2x}+28\)
\(=3\sqrt{2x}-5.2\sqrt{2x}+7.3\sqrt{2x}+28\)
\(=(3\sqrt{2x}-10\sqrt{2x}+21\sqrt{2x})+28\)
\(=14\sqrt{2x}+28\).
Bài 12
PHẦN 2. LỊCH SỬ VIỆT NAM TỪ NĂM 1919 ĐẾN NAY
Đề thi vào 10 môn Toán Thái Bình
PHẦN ĐẠI SỐ - TOÁN 9 TẬP 2
Đề thi vào 10 môn Văn Quảng Ngãi