Đề bài
Cho điểm M trên cạnh SA, điểm N trên cạnh SB của khối chóp tam giác S.ABC sao cho \({{SM} \over {MA}} = {1 \over 2},{{SN} \over {NB}} = 2.\) Mặt phẳng \(\left( \alpha \right)\) đi qua MN và song song với SC chia khối chóp thành hai phần. Tìm tỉ số thể tích hai phần đó.
Lời giải chi tiết
Kéo dài MN cắt AB tại I. Kẻ MD song song với \(SC\left( {D \in AC} \right)\), DI cắt CB tại E.
Vậy tứ giác MNED là thiết diện của khối chóp khi cắt bởi \(mp\left( \alpha \right)\). Ta có
\(\eqalign{ & {{{V_{A.MDI}}} \over {{V_{A.SCB}}}} = {{AM} \over {AS}}.{{AD} \over {AC}}.{{AI} \over {AB}} \cr & = {2 \over 3}.{2 \over 3}.{4 \over 3} = {{16} \over {27}} \cr & \Rightarrow {V_{A.MDI}} = {{16} \over {27}}{V_{S.ABC}} \cr &(BI = MJ,MJ = {1 \over 3}AB\cr& \Rightarrow BI = {1 \over 3}AB,AI = {4 \over 3}AB ). \cr & {{{V_{I.BNE}}} \over {{V_{I.AMD}}}} = {{IB} \over {IA}}.{{IN} \over {IM}}.{{IE} \over {ID}} = {1 \over 4}.{1 \over 2}.{1 \over 2} = {1 \over {16}} \cr & \Rightarrow {V_{I.BNE}} = {1 \over {16}}{V_{A.MDI}} = {1 \over {27}}{V_{S.ABC}} \cr} \)
Gọi \({V_1} = {V_{AMD.BNE}},{V_2}\) là phần còn lại thì
\({V_1} = {V_{A.MDI}} - {V_{I.BNE}} = {{15} \over {27}}{V_{S.ABC}} = {5 \over 9}{V_{S.ABC}}\)
Nên \({V_2} = {V_{S.ABC}} - {V_1} = {4 \over 9}{V_{S.ABC}}\) và \({{{V_1}} \over {{V_2}}} = {5 \over 4}\)
Bài giảng ôn luyện kiến thức giữa học kì 1 môn Lịch sử lớp 12
CHƯƠNG 2. CACBOHIDRAT
Bài giảng ôn luyện kiến thức cuối học kì 1 môn Hóa học lớp 12
Địa lí Việt Nam
PHẦN 6: TIẾN HÓA