Bài 1. Nhân đơn thức với đa thức
Bài 2. Nhân đa thức với đa thức
Bài 3. Những hằng đẳng thức đáng nhớ
Bài 4. Những hằng đẳng thức đáng nhớ (tiếp)
Bài 5. Những hằng đẳng thức đáng nhớ (tiếp)
Bài 6. Phân tích đa thức thành nhân tử bằng phương pháp đặt nhân tử chung
Bài 7. Phân tích đa thức thành nhân tử bằng phương pháp dùng hằng đẳng thức
Bài 8. Phân tích đa thức thành nhân tử bằng phương pháp nhóm hạng tử
Bài 9. Phân tích đa thức thành nhân tử bằng cách phối hợp nhiều phương pháp
Bài 10. Chia đơn thức cho đơn thức
Bài 11. Chia đa thức cho đơn thức
Bài 12. Chia đa thức một biến đã sắp xếp
Ôn tập chương I. Phép nhân và phép chia các đa thức
Đề kiểm tra 15 phút - Chương 1 - Đại số 8
Đề kiểm tra 45 phút ( 1 tiết) - Chương 1 - Đại số 8
Bài 1. Phân thức đại số
Bài 2. Tính chất cơ bản của phân thức
Bài 3. Rút gọn phân thức
Bài 4. Quy đồng mẫu thức nhiều phân thức
Bài 5. Phép cộng các phân thức đại số
Bài 6. Phép trừ các phân thức đại số
Bài 7. Phép nhân các phân thức đại số
Bài 8. Phép chia các phân thức đại số
Bài 9. Biến đổi các biểu thức hữu tỉ. Giá trị của phân thức
Ôn tập chương II. Phân thức đại số
Đề kiểm tra 15 phút – Chương 2 – Đại số 8
Đề kiểm tra 45 phút (1 tiết ) – Chương 2 – Đại số 8
Phân tích cá đa thức sau thành nhân tử:
LG a
\({x^2} - xy + x - y\);
Phương pháp giải:
Áp dụng phương pháp nhóm các hạng tử để xuất hiện nhân tử chung.
Cách 1: Nhóm hai hạng tử đầu tiên với nhau và hai hạng tử cuối với nhau
Cách 2: Nhóm hạng tử thứ 1 và thứ 3, nhóm hạng tử thứ 2 và thứ 4
Lời giải chi tiết:
\(\eqalign{
&\; {x^2} - xy + x - y \cr
& = ({x^2} - xy) + \left( {x - y} \right) \cr
& = x\left( {x - y} \right) + \left( {x - y} \right) \cr
& = \left( {x - y} \right)\left( {x + 1} \right) \cr} \)
Cách khác:
\(\begin{array}{l}
{x^2} - xy + x - y\\
= \left( {{x^2} + x} \right) + \left( { - xy - y} \right)\\
= \left( {x.x + x} \right) - \left( {xy + y} \right)\\
= x\left( {x + 1} \right) - y\left( {x + 1} \right)\\
= \left( {x + 1} \right)\left( {x - y} \right)
\end{array}\)
LG b
\(xz + yz - 5(x + y)\);
Phương pháp giải:
Áp dụng phương pháp nhóm các hạng tử để xuất hiện nhân tử chung.
Nhóm 2 hạng tử đầu rồi đặt \(z\) ra ngoài để xuất hiện nhân tử chung (x+y).
Lời giải chi tiết:
\(\eqalign{
& \;xz + yz{\rm{ }} - 5\left( {x + y} \right) \cr
& = \left( {xz + yz{\rm{ }}} \right) - 5\left( {x + y} \right) \cr
& = z\left( {x + y} \right) - 5\left( {x + y} \right) \cr
& = \left( {x + y} \right)\left( {z - 5} \right) \cr} \)
LG c
\(3{x^2} - 3xy - 5x + 5y\).
Phương pháp giải:
Áp dụng phương pháp nhóm các hạng tử để xuất hiện nhân tử chung.
Cách 1: Nhóm hai hạng tử đầu tiên với nhau và hai hạng tử cuối với nhau
Cách 2: Nhóm hạng tử thứ 1 và thứ 3, nhóm hạng tử thứ 2 và thứ 4
Lời giải chi tiết:
\(\eqalign{
& \,\,3{x^2} - 3xy - 5x + 5y \cr
& = (3{x^2} - 3xy) + \left( { - 5x + 5y} \right) \cr
& = 3x\left( {x - y} \right) - 5\left( {x - y} \right) \cr
& = \left( {x - y} \right)\left( {3x - 5} \right) \cr} \)
Cách khác:
\(\begin{array}{l}
3{x^2} - 3xy - 5x + 5y\\
= \left( {3{x^2} - 5x} \right) + \left( { - 3xy + 5y} \right)\\
= x\left( {3x - 5} \right) - \left( {3xy - 5y} \right)\\
= x\left( {3x - 5} \right) - y\left( {3x - 5} \right)\\
= \left( {3x - 5} \right)\left( {x - y} \right)
\end{array}\)
Chủ đề 8. Mùa hè
Bài 3. Sông ngòi và cảnh quan châu Á
Bài 2: Liêm Khiết
Chủ đề 2. Cơ khí
Tổng hợp từ vựng lớp 8 (Vocabulary) - Tất cả các Unit SGK Tiếng Anh 8 thí điểm
SGK Toán 8 - Chân trời sáng tạo
SBT Toán 8 - Cánh Diều
Bài giảng ôn luyện kiến thức môn Toán lớp 8
SGK Toán 8 - Cánh Diều
VBT Toán 8 - Kết nối tri thức với cuộc sống
SBT Toán 8 - Kết nối tri thức với cuộc sống
SGK Toán 8 - Kết nối tri thức với cuộc sống
Tổng hợp Lí thuyết Toán 8
SBT Toán Lớp 8
Giải bài tập Toán Lớp 8
Tài liệu Dạy - học Toán Lớp 8
Đề thi, đề kiểm tra Toán Lớp 8