Đề bài
Tìm giá trị của a và b để đường thẳng (d): y = (2b – a)x – 3(a+5b) đi qua hai điểm:
a) A(2 ; 4) và B(-1 ; 3)
b) M(2 ; 1) và N(1 ; -2)
Phương pháp giải - Xem chi tiết
Thay lần lượt tọa độ các điểm mà đường thẳng đi qua vào đường thẳng, giải hệ phương trình tìm a, b.
Lời giải chi tiết
a) \(A\left( {2;4} \right) \in d \Rightarrow 4 = \left( {2b - a} \right).2 - 3\left( {a + 5b} \right) \)
\(\Leftrightarrow 4 = 4b - 2a - 3a - 15b \)
\(\Leftrightarrow - 5a - 11b = 4\,\,\,\left( 1 \right)\)
\(B\left( { - 1;3} \right) \in d \Rightarrow 3 = \left( {2b - a} \right)\left( { - 1} \right) - 3\left( {a + 5b} \right) \)
\(\Leftrightarrow 3 = - 2b + a - 3a - 15b \)
\(\Leftrightarrow - 2a - 17b = 3\,\,\left( 2 \right)\)
Từ (1) và (2) ta có hệ phương trình
\(\begin{array}{l}\left\{ \begin{array}{l} - 5a - 11b = 4\\ - 2a - 17b = 3\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l} - 10a - 22b = 8\\ - 10a - 85b = 15\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}63b = - 7\\ - 5a - 11b = 4\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}b = - \dfrac{1}{9}\\ - 5a - 11.\dfrac{{ - 1}}{9} = 4\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}b = - \dfrac{1}{9}\\5a = \dfrac{{ - 25}}{9}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}b = - \dfrac{1}{9}\\a = \dfrac{{ - 5}}{9}\end{array} \right.\end{array}\)
Vậy \(a = - \dfrac{5}{9};\,\,b = - \dfrac{1}{9}\).
b) \(M\left( {2;1} \right) \in d \Rightarrow 1 = \left( {2b - a} \right).2 - 3\left( {a + 5b} \right)\)
\(\Leftrightarrow 1 = 4b - 2a - 3a - 15b\)
\(\Leftrightarrow - 5a - 11b = 1\,\,\,\left( 1 \right)\)
\(N\left( {1; - 2} \right) \in d \Rightarrow - 2 = \left( {2b - a} \right).1 - 3\left( {a + 5b} \right) \)
\(\Leftrightarrow - 2 = 2b - a - 3a - 15b\)
\(\Leftrightarrow - 4a - 13b = - 2\,\,\left( 2 \right)\)
Từ (1) và (2) ta có hệ phương trình
\(\begin{array}{l}\left\{ \begin{array}{l} - 5a - 11b = 1\\ - 4a - 13b = - 2\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l} - 20a - 44b = 4\\ - 20a - 65b = - 10\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}21b = 14\\ - 5a - 11b = 1\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}b = \dfrac{2}{3}\\ - 5a - 11.\dfrac{2}{3} = 1\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}b = \dfrac{2}{3}\\5a = \dfrac{{ - 25}}{3}\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}b = \dfrac{2}{3}\\a = \dfrac{{ - 5}}{3}\end{array} \right.\end{array}\)
Vậy \(a = - \dfrac{5}{3};\,\,b = \dfrac{2}{3}\).
CHƯƠNG II. NHIỄM SẮC THỂ
Đề thi, đề kiểm tra học kì 2 - Địa lí 9
Tiếng Anh 9 mới tập 2
Bài 4: Bảo vệ hoà bình
Đề kiểm tra 1 tiết - Chương 3 - Sinh 9