Bài 1. Phương trình bậc nhất hai ẩn
Bài 2. Hệ hai phương trình bậc nhất hai ẩn
Bài 3. Giải hệ phương trình bằng phương pháp thế
Bài 4. Giải hệ phương trình bằng phương pháp cộng đại số.
Bài 5. Giải bài toán bằng cách lập hệ phương trình
Bài 6.Giải bài toán bằng cách lập hệ phương trình (Tiếp theo)
Ôn tập chương III - Hệ hai phương trình bậc nhất hai ẩn
Đề kiểm 15 phút - Chương 3 - Đại số 9
Đề kiểm tra 45 phút (1 tiết) - Chương 3 - Đại số 9
Bài 1. Hàm số y = ax^2 (a ≠ 0)
Bài 2. Đồ thị của hàm số y = ax^2 (a ≠ 0).
Bài 3. Phương trình bậc hai một ẩn
Bài 4. Công thức nghiệm của phương trình bậc hai
Bài 5. Công thức nghiệm thu gọn
Bài 6. Hệ thức Vi-ét và ứng dụng
Bài 7. Phương trình quy về phương trình bậc hai
Bài 8. Giải bài toán bằng cách lập phương trình
Ôn tập chương IV - Hàm số y = ax^2 (a ≠ 0). Phương trình bậc hai một ẩn
Đề kiểm tra 15 phút - Chương 4 - Đại số 9
Đề kiểm tra 45 phút (1 tiết) - Chương 4 - Đại số 9
Đề bài
Cho ba hàm số:
\(y = \dfrac{1}{2}{x^2};\ y = {x^2};\ y = 2{x^2}\).
a) Vẽ đồ thị của ba hàm số này trên cùng một mặt phẳng tọa độ.
b) Tìm ba điểm \(A,\ B,\ C\) có cùng hoành độ \(x = -1,5\) theo thứ tự nằm trên ba đồ thị. Xác định tung độ tương ứng của chúng.
c) Tìm ba điểm \(A',\ B',\ C'\) có cùng hoành độ \(x = 1,5\) theo thứ tự nằm trên ba đồ thị. Kiểm tra tính đối xứng của \(A\) và \(A'\), \(B\) và \(B'\), \(C\) và \(C'\).
d) Với mỗi hàm số trên, hãy tìm giá trị của \(x\) để hàm số đó có giá trị nhỏ nhất.
Phương pháp giải - Xem chi tiết
+) Cách vẽ đồ thị hàm số \(y=ax^2\).
Bước 1: Xác định các điểm \((1; a)\) và \((2; 4a)\) và các điểm đối xứng của chúng qua \(Oy\).
Bước 2: Vẽ parabol đi qua gốc \(O(0;0)\) và các điểm trên.
+) Thay hoành độ \(x=x_0\) vào hàm số \(y=ax^2\) ta tìm được tung độ \(y\) tương ứng.
+) Áp dụng tính chất: Nếu \(a > 0\) thì đồ thị nằm phía trên trục hoành và \(O\) là điểm thấp nhất của đồ thị.
Lời giải chi tiết
a) +) Vẽ đồ thị hàm số \(y = \dfrac{1}{2}{x^2}\)
Cho \(x=1 \Rightarrow y=\dfrac{1}{2}\). Đồ thị đi qua \({\left(1; \dfrac{1}{2} \right)}\).
Cho \(x=-1 \Rightarrow y=\dfrac{1}{2}\). Đồ thị đi qua \({\left(-1; \dfrac{1}{2} \right)}\).
Cho \(x=2 \Rightarrow y=\dfrac{1}{2}. 2^2=2\). Đồ thị hàm số đi qua điểm \((2; 2)\).
Cho \(x=-2 \Rightarrow y=\dfrac{1}{2}.(-2)^2=2\). Đồ thị hàm số đi qua điểm \((-2; 2)\).
Đồ thị hàm số \(y=\dfrac{1}{2}x^2\) là parabol đi qua gốc tọa độ và các điểm trên.
+) Vẽ đồ thị hàm số \(y=x^2\).
Cho \(x=1 \Rightarrow y=1\). Đồ thị đi qua \((1; 1)\).
Cho \(x=-1 \Rightarrow y=(-1)^2\). Đồ thị đi qua \((-1; 1)\).
Cho \(x=2 \Rightarrow y=2^2=4\). Đồ thị hàm số đi qua điểm \((2; 4)\).
Cho \(x=-2 \Rightarrow y=(-2)^2=4\). Đồ thị hàm số đi qua điểm \((-2; 4)\).
Đồ thị hàm số \(y=x^2\) là parabol đi qua gốc tọa độ và các điểm trên.
+) Vẽ đồ thị hàm số \(y=2x^2\).
Cho \(x=1 \Rightarrow y=2.1^2=2\). Đồ thị đi qua \((1; 2)\).
Cho \(x=-1 \Rightarrow y=2.(-1)^2\). Đồ thị đi qua \((-1; 2)\).
Cho \(x=2 \Rightarrow y=2.2^2=8\). Đồ thị hàm số đi qua điểm \((2; 8)\).
Cho \(x=-2 \Rightarrow y=2.(-2)^2=8\). Đồ thị hàm số đi qua điểm \((-2; 8)\).
Đồ thị hàm số \(y=2x^2\) là parabol đi qua gốc tọa độ và các điểm trên.
b)
Xác định điểm P trên trục Ox có hoành độ \(x = - 1,5\). Qua P kẻ đường thẳng song song với trục Oy, nó cắt các đồ thị \(y = \dfrac{1}{2}{x^2};y = {x^2};y = 2{x^2}\) lần lượt tại \(A;B;C\)
Gọi \({y_A},{y_B},{y_C}\) lần lượt là tung độ các điểm \(A,\ B,\ C\). Ta có:
\(\eqalign{
& {y_A} = {1 \over 2}{( - 1,5)^2} = {1 \over 2}.2,25 = 1,125 \cr
& {y_B} = {( - 1,5)^2} = 2,25 \cr
& {y_C} = 2{( - 1.5)^2} = 2.2,25 = 4,5 \cr} \)
c) Xác định điểm \(P'\) trên trục Ox có hoành độ \(x = 1,5\). Qua \(P'\) kẻ đường thẳng song song với trục Oy, nó cắt các đồ thị \(y = \dfrac{1}{2}{x^2};y = {x^2};y = 2{x^2}\) lần lượt tại \(A';B';C'\)
Gọi \({y_{A'}},{y_{B'}},{y_{C'}}\) lần lượt là tung độ các điểm \(A', B', C'\) . Ta có:
\(\eqalign{
& {y_{A'}} = {1 \over 2}{(1,5)^2} = {1 \over 2}.2,25 = 1,125 \cr
& {y_{B'}} = {(1,5)^2} = 2,25 \cr
& {y_{C'}} = 2{(1.5)^2} = 2.2,25 = 4,5 \cr} \)
Kiểm tra tính đối xứng: \(A\) và \(A'\), \(B\) và \(B'\), \(C\) và \(C'\) đối xứng với nhau qua trục tung \(Oy\).
d) Với mỗi hàm số đã cho ta đều có hệ số \(a > 0\) nên O là điểm thấp nhất của đồ thị.
Vậy với \(x = 0\) thì các hàm số trên đều có giá trị nhỏ nhất \(y=0.\)
Đề kiểm tra 15p kì 1 – Có đáp án và lời giải
Đề thi vào 10 môn Toán Đồng Tháp
Bài 2. Dân số và gia tăng dân số
Bài 6. Sự phát triển nền kinh tế Việt Nam
Chương 2. Kim loại