SGK Toán 11 - Chân trời sáng tạo tập 2

Câu hỏi 5 - Mục Bài tập trang 64

1. Nội dung câu hỏi

Một cái lều có dạng hình lăng trụ \(ABC.A'B'C'\) có cạnh bên \(AA'\)vuông góc với đáy (Hình 24). Cho biết \(AB = AC = 2,4m;BC = 2{\rm{ }}m;AA' = 3m\).

a) Tính góc giữa hai đường thẳng \(AA'\) và \(BC\); \(A'B'\) và \(AC\).

b) Tính diện tích hình chiếu vuông góc của tam giác \(ABB'\) trên mặt phẳng \(\left( {BB'C'C} \right)\).


2. Phương pháp giải

a) Cách xác định góc giữa hai đường thẳng \(a\) và \(b\):

Bước 1: Lấy một điểm \(O\) bất kì.

Bước 2: Qua điểm \(O\) dựng đường thẳng \(a'\parallel a\) và đường thẳng \(b'\parallel b\).

Bước 3: Tính \(\left( {a,b} \right) = \left( {a',b'} \right)\).

b) Sử dụng phép chiếu vuông góc.

 

3. Lời giải chi tiết

 

 

a) Ta có: \(AA' \bot \left( {ABC} \right) \Rightarrow AA' \bot BC \Rightarrow \left( {AA',BC} \right) = {90^ \circ }\)

\(A'B'\parallel AB \Rightarrow \left( {A'B',AC} \right) = \left( {AB,AC} \right) = \widehat {BAC}\)

Xét tam giác \(ABC\) có:

\(\cos \widehat {BAC} = \frac{{A{B^2} + A{C^2} - B{C^2}}}{{2.AB.AC}} = \frac{{47}}{{72}} \Rightarrow \widehat {BAC} \approx {49^ \circ }15'\)

Vậy \(\left( {A'B',AC} \right) \approx {49^ \circ }15'\).

b) Gọi \(I\) là trung điểm của \(BC\)

Tam giác \(ABC\) cân tại \(A \Rightarrow AI \bot BC\)

\(\left. \begin{array}{l}AA' \bot \left( {ABC} \right)\\BB'\parallel AA'\end{array} \right\} \Rightarrow BB' \bot \left( {ABC} \right) \Rightarrow BB' \bot AI\)

\( \Rightarrow AI \bot \left( {BB'C'C} \right)\)

\( \Rightarrow I\) là hình chiếu vuông góc của \(A\) trên mặt phẳng \(\left( {BB'C'C} \right)\)

Có \(B,B' \in \left( {BB'C'C} \right)\)

Vậy \(\Delta IBB'\) là hình chiếu vuông góc của \(\Delta ABB'\) trên mặt phẳng \(\left( {BB'C'C} \right)\)

Ta có: \(BB' = AA' = 3,BI = \frac{1}{2}BC = 1 \Rightarrow {S_{\Delta IBB'}} = \frac{1}{2}BB'.BI = 1,5\left( {{m^2}} \right)\)

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved