Đề bài
Chứng minh rằng, khi hai cuộn cảm thuần L1 và L2 mắc nối tiếp trong một mạch điện xoay chiều thì cuộn cảm tương đương có cảm kháng cho bởi:
ZL = (L1 + L2) ω
Phương pháp giải - Xem chi tiết
+ Mạch có L1 và L2 mắc nối tiếp thì: u = u1 + u2
+ Dung kháng: ZL = ωL
Lời giải chi tiết
* Cách 1:
Khi L1 và L2 mắc nối tiếp thì:
\(\eqalign{
& u = {u_1} + {u_2} = - {L_1}{{di} \over {dt}} - {L_2}{{di} \over {dt}} \cr
& u = - \left( {{L_1} + {L_2}} \right){{di} \over {dt}} = - L{{di} \over {dt}} \cr} \)
Với L = L1 + L2
=> Cảm kháng: \({Z_L} = \omega L = {L_1}\omega + {L_2}\omega = {Z_{L1}} + {Z_{L2}} = \left( {{L_1} + {L_2}} \right)\omega \)
* Cách 2:
Gọi \( i = {I_0}\cos \omega t(A)\) là dòng điện qua mạch điện.
Vì L1 nối tiếp L2 nên U=U1+U2 và I1=I2=I
Các điện áp hai đầu L1 và L2 đều nhanh pha hơn I một góc \( \frac{\pi }{2}\)
\(\eqalign{& \Rightarrow U = U{Z_1} + {U_2} = I.{Z_{L1}} + I.{Z_{L2}} = I.({Z_{L1}} + {Z_{L2}}) \cr & = I({L_1}\omega + {L_2}\omega ) \cr} \)
Tổng trở của mạch là:
\( \eqalign{& Z = \frac{U}{I} = \frac{{I({L_1}\omega + {L_2}\omega )}}{I} = {L_1}\omega + {L_2}\omega = \omega ({L_1} + {L_2}) \cr & \Rightarrow {Z_L} = Z = ({L_1} + {L_2})\omega \cr} \)
Bài giảng ôn luyện kiến thức giữa học kì 1 môn Lịch sử lớp 12
CHƯƠNG 6. KIM LOẠI KIỀM, KIM LOẠI KIỀM THỔ, NHÔM
Unit 12. Water Sports
Chương 4. POLIME VÀ VẬT LIỆU POLIME
Chương 1. Cơ chế di truyền và biến dị