Bài 53 trang 12 SBT Hình học 12 Nâng cao

Lựa chọn câu hỏi để xem giải nhanh hơn
LG a
LG b

Cho hình chóp tam giác S.ABC và là một điểm nằm trong tam giác ABC. Các đường thẳng qua M song song với SA, SB, SC lần lượt cắt các mặt \(\left( {BCS} \right),\left( {CAS} \right),\left( {ABS} \right)\) tại A’, B’, C’. Chứng minh rằng :

Lựa chọn câu hỏi để xem giải nhanh hơn
LG a
LG b

LG a

\({{{V_{M.BCS}}} \over {{V_{S.ABC}}}} = {{MA'} \over {SA}};\)

Lời giải chi tiết:

Gọi N là giao điểm của MA và BC. Khi đó S, A’, N thẳng hàng vì chúng cùng nằm trên giao tuyến của hai mặt phẳng \(\left( {SBC} \right)\) và \(\left( {SA,A'M} \right)\).

Gọi MMvà AA1 là các đường vuông góc hạ từ M và A xuống \(mp\left( {SBC} \right)\) thì :

\({{M{M_1}} \over {A{A_1}}} = {{MN} \over {AN}} = {{MA'} \over {SA}}.\)

Vậy \({{{V_{M.BCS}}} \over {{V_{S.ABC}}}} = {{{V_{M.BCS}}} \over {{V_{A.BCS}}}} = {{{1 \over 3}{S_{BCS}}.M{M_1}} \over {{1 \over 3}{S_{BCS}}A{A_1}}} = {{M{M_1}} \over {A{A_1}}} = {{MA'} \over {SA}}\)

 

LG b

\({{MA'} \over {SA}} + {{MB'} \over {SB}} + {{MC'} \over {SC}}\) không đổi. Tìm tổng đó.

Lời giải chi tiết:

Chứng minh tương tự như câu a), ta có :

\({{{V_{M.CAS}}} \over {{V_{S.ABC}}}} = {{MB'} \over {SB}},{{{V_{M.ABS}}} \over {{V_{S.ABC}}}} = {{MC'} \over {SC}}.\)

Vậy :

\({{MA'} \over {SA}} + {{MB'} \over {SB}} + {{MC'} \over {SC}} = {{{V_{M.BCS}} + {V_{M.CAS}} + {V_{M.ABS}}} \over {{V_{S.ABC}}}} \)

\(= {{{V_{S.ABC}}} \over {{V_{S.ABC}}}} = 1.\)

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved