Bài 1. Góc ở tâm. Số đo cung
Bài 2. Liên hệ giữa cung và dây
Bài 3. Góc nội tiếp
Bài 4. Góc tạo bởi tia tiếp tuyến và dây cung
Bài 5. Góc có đỉnh ở bên trong đường tròn. Góc có đỉnh ở bên ngoài đường tròn
Bài 6. Cung chứa góc
Bài 7. Tứ giác nội tiếp
Bài 8. Đường tròn ngoại tiếp. Đường tròn nội tiếp
Bài 9. Độ dài đường tròn, cung tròn
Bài 10. Diện tích hình tròn, hình quạt tròn
Ôn tập chương III – Góc với đường tròn
Đề kiểm tra 15 phút - Chương 3 - Hình học 9
Đề kiểm tra 45 phút (1 tiết) - Chương 3 - Hình học 9
Bài 1. Hình trụ - Diện tích xung quanh và thể tích hình trụ
Bài 2. Hình nón - Hình nón cụt - Diện tích xung quanh và thể tích của hình nón, hình nón cụt
Bài 3. Hình cầu. Diện tích hình cầu và thể tích hình cầu
Ôn tập chương IV – Hình trụ - Hình nón – Hình cầu
Đề kiểm tra 45 phút (1 tiết) - Chương 4 - Hình học 9
Đề bài
Tứ giác \(ABCD\) có \(\widehat{ABC}+ \widehat{ADC}= 180^0\). Chứng minh rằng các đường trung trực của \(AC,\, BD, \,AB\) cùng đi qua một điểm.
Phương pháp giải - Xem chi tiết
+) Nếu một tứ giác có tổng số đo hai góc đối diện bằng \(180^0\) thì tứ giác đó là tứ giác nội tiếp.
+) Các điểm thuộc đường trung trực của một đoạn thẳng đều cách đều hai đầu mút của đoạn thẳng đó.
Lời giải chi tiết
Tứ giác \(ABCD\) có \(\widehat{ABC}+ \widehat{ADC}= 180^0\) mà hai góc \(\widehat{ABC}\) và \( \widehat{ADC}\) là hai góc ở vị trí đối nhau nên tứ giác \(ABCD\) là tứ giác nội tiếp.
Gọi \(O\) là tâm đường tròn ngoại tiếp tứ giác \(ABCD\), khi đó \(OA=OB=OC=OD\) (cùng bằng bán kính của đường tròn \( (O) \) )
+ Vì \(OA = OB\) nên \(O\) thuộc đường trung trực của đoạn \(AB\) (định lí)
+ Vì \(OA = OC\) nên \(O\) thuộc đường trung trực của đoạn \(AC\) (định lí)
+ Vì \(OD = OB\) nên \(O\) thuộc đường trung trực của đoạn \(BD\) (định lí)
Do đó các đường trung trực của \(AB, \, BD, \, AC\) cùng đi qua tâm \(O\) của đường tròn ngoại tiếp tứ giác \(ABCD\).
Đề thi vào 10 môn Toán Hải Phòng
Đề thi vào 10 môn Toán Hà Nam
Bài 20
Đề cương ôn tập học kì 1 - Vật lí 9
CHƯƠNG 1. CÁC LOẠI HỢP CHẤT VÔ CƠ