PHẦN HÌNH HỌC - TOÁN 9 TẬP 2

Bài 55 trang 89 sgk Toán lớp 9 tập 2

Đề bài

Cho \(ABCD\) là một tứ giác nội tiếp đường tròn tâm \(M,\) biết \(\widehat {DAB}= 80^0\), \(\widehat {DAM}= 30^0,\)  \(\widehat {BMC}= 70^0\).

Hãy tính số đo các góc \(\widehat {MAB},\)  \(\widehat {BCM},\)  \(\widehat {AMB},\)  \(\widehat {DMC},\)  \(\widehat {AMD},\)  \(\widehat {MCD}\) và \(\widehat {BCD}.\)

Phương pháp giải - Xem chi tiết

+ Sử dụng các định lý: “Tổng ba góc trong tam giác bằng \(180^0\)”.

+ Sử dụng tính chất tam giác cân

+ Sử dụng góc ở tâm bằng số đo cung bị chắn.

Lời giải chi tiết

 

                      

Vì AM nằm giữa AD và AB nên  \(\widehat {MAB}+\widehat {DAM}= \widehat {DAB}\). Do đó, \(\widehat {MAB} = \widehat {DAB} - \widehat {DAM} = {80^0} - {30^0} = {50^0}\) (1)

+)  \(∆MBC\) là tam giác cân  cân tại \(M\) \((MB= MC)\) nên \(\displaystyle \widehat {BCM} = {{{{180}^0} - {{70}^0}} \over 2} = {55^0}\) (2)

+)  \(∆MAB\) là tam giác cân tại \(M\) \((do MA=MB)\) nên \(\widehat {MAB} =\widehat {ABM} = {50^0}\) (theo (1))

Vậy \(\widehat {AMB} = {180^0} - {2.50^0} = {80^0}.\)

Ta có: \(\widehat {BAD}=\dfrac{sđ\overparen{BCD}}{2}\) (số đo góc nội tiếp bằng nửa số đo của cung bị chắn).

\(\Rightarrow sđ\overparen{BCD}=2.\widehat {BAD} = {2.80^0} = {160^0}.\)  

Mà \(sđ\overparen{BC}= \widehat {BMC} = {70^0}\) (số đo góc ở tâm bằng số đo cung bị chắn).

Vậy \(sđ\overparen{DC}={160^0} - {70^0} = {90^0}\) (vì C nằm trên cung nhỏ cung \(BD\)).

\(\Rightarrow\) \(\widehat {DMC} = {90^0}.\)               (4)

Ta có: \(∆MAD\) là tam giác cân cân tại \(M \) \((MA= MD).\) 

\(\Rightarrow\) \(\widehat {AMD} = {180^0} - {2.30^0}=120^0\)   (5)

Có \(∆MCD\) là tam giác vuông cân tại \(M\) \((MC= MD)\) và \(\widehat {DMC} = {90^0}\)

\(\Rightarrow\) \(\widehat {MCD} = \widehat {MDC} = {45^0}.\)  (6)

Theo (2) và (6) và vì CM là tia nằm giữa hai tia \(CB, \, CD\) ta có: \(\widehat {BCD} =\widehat{BCM}+\widehat{MCD} = 55^0+45^0 = {100^0}.\)  

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved