PHẦN ĐẠI SỐ - TOÁN 8 TẬP 1
PHẦN ĐẠI SỐ - TOÁN 8 TẬP 1

Bài 56 trang 59 sgk toán 8 tập 1

Lựa chọn câu hỏi để xem giải nhanh hơn
LG a.
LG b.
LG c.

Cho phân thức \(\dfrac{{3{x^2} + 6x + 12}}{{{x^3} - 8}}\).

Lựa chọn câu hỏi để xem giải nhanh hơn
LG a.
LG b.
LG c.

LG a.

LG a.

Với điều kiện nào của \(x\) thì giá trị của phân thức được xác định?

Phương pháp giải:

Điều kiện xác định của phân thức là mẫu thức khác \(0\).

Lời giải chi tiết:

Ta có: \({x^3} - 8 = {x^3} - {2^3} \) \(= \left( {x - 2} \right)\left( {{x^2} + 2x + 4} \right)\)

Vì \({x^2} + 2x + 4 = {x^2} + 2x + 1 + 3 \) \(= {\left( {x + 1} \right)^2} + 3 \ge 3>0\) với mọi giá trị của \(x\).

Do đó, điều kiện để phân thức xác định là: \({x^3} - 8 \ne 0  \Rightarrow \left( {x - 2} \right)\left( {{x^2} + 2x + 4} \right)\ne 0\) \(\Rightarrow x - 2 \ne 0 \Rightarrow x \ne 2\)

Vậy với \(x \ne 2\) thì phân thức được xác định.

LG b.

LG b.

Rút gọn phân thức.

Phương pháp giải:

Rút gọn phân thức: Phân tích tử thức và mẫu thức sau đó chia cả tử thức và mẫu thức cho nhân tử chung giống nhau.

Lời giải chi tiết:

Với \(x \ne 2\), ta có: 

\(\eqalign{
& {{3{x^2} + 6x + 12} \over {{x^3} - 8}} \cr 
& = {{3{x^2} + 6x + 12} \over {{x^3} - {2^3}}} \cr 
& = {{3\left( {{x^2} + 2x + 4} \right)} \over {\left( {x - 2} \right)\left( {{x^2} + 2x + 4} \right)}} = {3 \over {x - 2}} \cr} \)

LG c.

LG c.

Em có biết trên \(1c{m^2}\) bề mặt da của em có bao nhiêu con vi khuẩn không?

Tính giá trị của biểu thức đã cho tại \(x = \dfrac{{4001}}{{2000}}\) em sẽ tìm được câu trả lời thật đáng sợ. (Tuy nhiên trong số đó chỉ có \(20\% \) là vi khuẩn có hại).

Phương pháp giải:

Thay \(x = \dfrac{{4001}}{{2000}}\) vào phân thức rút gọn để tính giá trị của phân thức.

Lời giải chi tiết:

Vì \(x = \dfrac{{4001}}{{2000}} \ne 2\) thỏa mãn điều kiện xác định của phân thức nên khi đó giá trị của biểu thức đã cho bằng:

\(\eqalign{
& \dfrac{3}{{\dfrac{{4001}}{{2000}} - 2}} = \dfrac{3}{{\dfrac{{4001 - 2.2000}}{{2000}}}} \cr 
& = {{3} \over {\displaystyle 1\over \displaystyle 2000}} = {{3.2000} \over {1}} \cr 
& = {{6000} \over 1} = 6000 \cr} \)

Như vậy trên \(1c{m^2}\) bề mặt da của ta có \(6000\) con vi khuẩn, tuy nhiên số vi khuẩn có hại trong số đó là: \(6000.20\%  = 1200\) con.

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved