Bài 59 trang 130 Sách bài tập Hình học lớp 12 Nâng cao

Lựa chọn câu hỏi để xem giải nhanh hơn
LG a
LG b
LG c
LG d
LG e
LG g
LG h

Viết phương trình đường thẳng trong mỗi trường hợp sau đây :

Lựa chọn câu hỏi để xem giải nhanh hơn
LG a
LG b
LG c
LG d
LG e
LG g
LG h

LG a

Đi qua A(2;0;-1) và có vec tơ pháp tuyến chỉ phương \(\overrightarrow u  =  - \overrightarrow i  + 3\overrightarrow j  + 5\overrightarrow k .\)

Lời giải chi tiết:

\(\eqalign{\;\left\{ \matrix{  x = 2 - t \hfill \cr  y = 3t \hfill \cr  z =  - 1 + 5t \hfill \cr}  \right. \Leftrightarrow {{x - 2} \over { - 1}} = {y \over 3} = {{z + 1} \over 5}\cr} \)

LG b

Đi qua A(-2;1;2) và song song với trục Oz.

Lời giải chi tiết:

\(\eqalign{\left\{ \matrix{  x =  - 2 \hfill \cr  y = 1 \hfill \cr  z = 2 + t. \hfill \cr}  \right.  \cr  &\cr} \)

LG c

Đi qua A(2;3;-1) và B(1;2;4).

Lời giải chi tiết:

\(\eqalign{\;\left\{ \matrix{  x = 2 + t \hfill \cr  y = 3 + t \hfill \cr  z =  - 1 - 5t \hfill \cr}  \right. \Leftrightarrow {{x - 2} \over 1} = {{y - 3} \over 1} = {{z + 1} \over { - 5}}\cr} \)

LG d

Đi qua A(4;3;1) và song song với đường thẳng

\(\Delta :\left\{ \matrix{  x = 1 + 2t \hfill \cr y =  - 3t \hfill \cr z = 3 + 2t. \hfill \cr}  \right.\)

Lời giải chi tiết:

\(\eqalign{\left\{ \matrix{  x = 4 + 2t \hfill \cr  y = 3 - 3t \hfill \cr  z = 1 + 2t \hfill \cr}  \right. \Leftrightarrow {{x - 4} \over 2} = {{y - 3} \over { - 3}} = {{z - 1} \over 2}\cr} \)

LG e

Đi qua A(1;2;-1) và song song với đường thẳng giao tuyến của hai mặt phẳng \(\left( \alpha  \right):x + y - z + 3 = 0\) và \(\left( {\alpha '} \right):2x - y + 5z - 4 = 0\).

Lời giải chi tiết:

Vectơ chỉ phương của đường thẳng cần tìm là :

\(\overrightarrow u  = \left( {\left| \matrix{  1 \hfill \cr   - 1 \hfill \cr}  \right.\left. \matrix{   - 1 \hfill \cr  5 \hfill \cr}  \right|;\left| \matrix{   - 1 \hfill \cr  5 \hfill \cr}  \right.\left. \matrix{  1 \hfill \cr  2 \hfill \cr}  \right|;\left| \matrix{  1 \hfill \cr  2 \hfill \cr}  \right.\left. \matrix{  1 \hfill \cr   - 1 \hfill \cr}  \right|} \right)\)

\(= (4; - 7; - 3).\)

Vậy phương trình đường thẳng là \(\left\{ \matrix{  x = 1 + 4t \hfill \cr  y = 2 - 7t \hfill \cr  z =  - 1 - 3t. \hfill \cr}  \right.\)

LG g

Đi qua A(-2;1;0) và vuông góc với mặt phẳng \(\left( \alpha  \right):x +2 y - 2z + 1 = 0\).

Lời giải chi tiết:

Vectơ chỉ phương của đường thẳng là \(\overrightarrow u  = \overrightarrow {{n_\alpha }}  = (1;2; - 2).\)

Vậy phương trình là : \(\left\{ \matrix{  x =  - 2 + t \hfill \cr  y = 1 + 2t \hfill \cr  z =  - 2t. \hfill \cr}  \right.\)

LG h

Đi qua A(2;-1;1) và vuông góc với hai đường thẳng lần lượt có vec tơ chỉ phương là \(\overrightarrow {{u_1}} ( - 1;1; - 2)\) và \(\overrightarrow {{u_2}} (1; - 2;0).\)

Lời giải chi tiết:

Vectơ chỉ phương của đường thẳng cần tìm là :

\(\overrightarrow u  = \left[ {\overrightarrow {{u_1}} ,\overrightarrow {{u_2}} } \right]\)

\(= \left( {\left| \matrix{  1 \hfill \cr   - 2 \hfill \cr}  \right.\left. \matrix{   - 2 \hfill \cr  0 \hfill \cr}  \right|;\left| \matrix{   - 2 \hfill \cr  0 \hfill \cr}  \right.\left. \matrix{   - 1 \hfill \cr  1 \hfill \cr}  \right|;\left| \matrix{   - 1 \hfill \cr  1 \hfill \cr}  \right.\left. \matrix{  1 \hfill \cr   - 2 \hfill \cr}  \right|} \right) \)

\(= ( - 4; - 2;1).\)

Vậy phương trình của nó là \(\left\{ \matrix{  x =   2 - 4t \hfill \cr  y =  - 1 - 2t \hfill \cr  z = 1 + t. \hfill \cr}  \right.\)

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved