Đề bài
Cho hình vuông C1 có cạnh bằng 4. Người ta chia mỗi cạnh của hình vuông thành bốn phần bằng nhau và nối các điểm chia một cách thích hợp để có hình vuông C2 (hình bên). Từ hình vuông C2 lại tiếp tục như trên để được hình vuông C3… Tiếp tục quá trình trên, ta nhận được các dãy các hình vuông C1, C2, C3, …,Cn
Gọi an là độ dài cạnh của hình vuông Cn. Chứng minh dãy số (an) là một cấp số nhân.
Lời giải chi tiết
Xét dãy số \((a_n)\), ta có \(a_1= 4\).
Gọi \({a_n}\) là cạnh hình vuông \({C_n}\).
Ta tính cạnh hình vuông \({a_{n + 1}}\) như sau:
Xét tam giác \(BEF\) vuông tại \(B\) có \(BE = \dfrac{3}{4}BA = \dfrac{{3{a_n}}}{4}\), \(BF = \dfrac{1}{4}BC = \dfrac{{{a_n}}}{4}\)
Do đó \(EF = \sqrt {B{E^2} + B{F^2}} \) \( = \sqrt {{{\left( {\dfrac{{3{a_n}}}{4}} \right)}^2} + {{\left( {\dfrac{{{a_n}}}{4}} \right)}^2}} = \dfrac{{\sqrt {10} }}{4}{a_n}\) hay \({a_{n + 1}} = \dfrac{{\sqrt {10} }}{4}{a_n}\).
Vậy dãy số \((a_n)\) là cấp số nhân với số hạng đầu là \(a_1= 4\) và công bội \(\displaystyle q = {{\sqrt {10} } \over 4}\)
CHƯƠNG V: HIĐROCABON NO
Tải 10 đề kiểm tra 15 phút - Chương VIII - Hóa học 11
Chủ đề 3. Điện trường
Tải 20 đề kiểm tra 15 phút - Chương 2
CHƯƠNG III. SINH TRƯỞNG VÀ PHÁT TRIỂN
SBT Toán Nâng cao Lớp 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Nâng cao Lớp 11