Đề bài
Dựa vào đồ thị hàm số \(y = \sin x\), tìm các khoảng giá trị của \(x\) để hàm số đó nhận giá trị dương.
Video hướng dẫn giải
Phương pháp giải - Xem chi tiết
B1: Tìm các khoảng chứa các điểm thuộc đồ thị hàm số \(y=\sin x\) và nằm phía trên trục hoành trong khoảng \([-π ; π]\)
B2: dựa vào chu kì tuần hoàn của hàm số \(y=\sin x\) suy ra tất cả các khoảng chứa các điểm thuộc đồ thị hàm số và nằm phía trên trục hoành.
Lời giải chi tiết
Nhìn đồ thị \(y = \sin x\) ta thấy trong đoạn \([-π ; π]\) các điểm nằm phía trên trục hoành của đồ thị \(y = \sin x\) là các điểm có hoành độ thuộc khoảng \((0 ; π)\).
Hàm số \(y=\sin x\) là hàm số tuần hoàn với chu kì \(2\pi\). Từ đó, tất cả các khoảng giá trị của \(x\) để hàm số đó nhận giá trị dương là \((0 + k2π ; π + k2π)\) hay \((k2π ; π + k2π)\) với \(k \in Z\).
Chủ đề 1. Dao động
Chương 1. Mô tả dao động
Chủ đề 6: Văn hóa tiêu dùng
Chủ đề 4: Kĩ thuật dừng bóng
Chủ đề 2: Kĩ thuật di chuyển và chuyền bóng
SBT Toán Nâng cao Lớp 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Nâng cao Lớp 11