Giải bài 6 trang 43 SGK Toán 10 tập 1 – Cánh diều
Đề bài
Khi du lịch đến thành phố St. Louis (Mỹ), ta sẽ thấy một cái cổng lớn có hình parabol hướng bề lõm xuống dưới, đó là cổng Arch. Giả sử ta lập một hệ toạ độ Oxy sao cho một chân cổng đi qua gốc O như Hình 16 (x và y tính bằng mét), chân kia của cổng ở vị trí có toạ độ (162;0). Biết một điểm M trên cổng có toạ độ là (10;43). Tính chiều cao của cổng (tính từ điểm cao nhất trên cổng xuống mặt đất), làm tròn kết quả đến hàng đơn vị.
Phương pháp giải - Xem chi tiết
- Xác định các điểm thuộc đồ thị.
- Gọi hàm số là \(y = a{x^2} + bx + c\left( {a \ne 0} \right)\)
- Thay tọa độ các điểm vào và tìm a, b, c.
- Tìm đỉnh của parabol, từ đó suy ra chiều cao của cổng.
Lời giải chi tiết
Từ đồ thị ta thấy các điểm thuộc đồ thị là: \(A\left( {0;0} \right),B\left( {10;43} \right),C\left( {162;0} \right)\).
Gọi hàm số là \(y = a{x^2} + bx + c\left( {a \ne 0} \right)\)
Thay tọa độ các điểm A, B, C vào ta được hệ:
\(\left\{ \begin{array}{l}a{.0^2} + b.0 + c = 0\\a{.10^2} + b.10 + c = 43\\a{.162^2} + b.162 + c = 0\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}c = 0\\100a + 10b = 43\\{162^2}a + 162b = 0\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}c = 0\\a = - \frac{{43}}{{1520}}\\b = \frac{{3483}}{{760}}\end{array} \right.\)
Từ đố ta có \(y = - \frac{{43}}{{1520}}{x^2} + \frac{{3483}}{{760}}x\)
Hoành độ đỉnh của đồ thị là: \(x = - \frac{b}{{2a}} = 81\)
Khi đó: \(y = - \frac{{43}}{{1520}}{.81^2} + \frac{{3483}}{{760}}.81 \approx 186\)(m)
Vậy chiều cao của cổng là 186m.
Unit 2: Humans and the environment
Bài 12. Kĩ thuật cấp cứu và chuyền thương
Một chuyện đùa nho nhỏ
Phần 3. Sinh học vi sinh vật và virus
Chủ đề 4. Các cuộc cách mạng công nghiệp trong lịch sử thế giới
Chuyên đề học tập Toán - Cánh diều Lớp 10
Đề thi, đề kiểm tra Toán lớp 10 - Kết nối tri thức
Đề thi, đề kiểm tra Toán lớp 10 - Chân trời sáng tạo
Đề thi, đề kiểm tra Toán lớp 10 - Cánh diều
Bài giảng ôn luyện kiến thức môn Toán lớp 10
Chuyên đề học tập Toán - Chân trời sáng tạo Lớp 10
Chuyên đề học tập Toán - Kết nối tri thức Lớp 10
Lý thuyết Toán Lớp 10
SBT Toán - Cánh Diều Lớp 10
SBT Toán - Chân trời sáng tạo Lớp 10
SBT Toán - Kết nối tri thức Lớp 10
SGK Toán - Chân trời sáng tạo Lớp 10
SGK Toán - Kết nối tri thức Lớp 10