PHẦN GIẢI TÍCH - TOÁN 12

Bài 6 trang 44 SGK Giải tích 12

Lựa chọn câu hỏi để xem giải nhanh hơn
LG a
LG b
LG c

Cho hàm số  \(y = {{mx - 1} \over {2x + m}}\) .

Lựa chọn câu hỏi để xem giải nhanh hơn
LG a
LG b
LG c

LG a

a) Chứng minh rằng với mọi giá trị của tham số \(m\), hàm số luôn đồng biến trên mỗi khoảng xác định của nó.

Phương pháp giải:

Tính đạo hàm của hàm số: \(y'\), chỉ ra \(y' > 0,\forall x \in D.\) 

Lời giải chi tiết:

\(\displaystyle y = {{mx - 1} \over {2x + m}}\).

Tập xác định: \(\displaystyle \mathbb R\backslash \left\{ {{{ - m} \over 2}} \right\}\)  ;

Ta có: \(\displaystyle y' = {{{m^2} + 2} \over {{{(2x + m)}^2}}} > 0,\forall x \ne  - {m \over 2}\)

  Do đó hàm số luôn đồng biến trên mỗi khoảng xác định của nó.

LG b

b) Xác định m để tiệm cận đứng đồ thị đi qua \(A(-1 ; \sqrt2)\).

Phương pháp giải:

Xác định đường tiệm cận của đồ thị hàm số theo m. Sau đó thế tọa độ của điểm A vào phương trình đường tiệm cận để tìm m.

Lời giải chi tiết:

Tiệm cận đứng \(\displaystyle ∆\): \(\displaystyle x =  - {m \over 2}\).

Vì \(\displaystyle A(-1 ; \sqrt2) ∈ ∆\) \(\displaystyle ⇔- {m \over 2}= -1 ⇔ m = 2\).

LG c

c) Khảo sát sự biến thiên và vẽ đồ thị của hàm số khi \(m = 2\).

Phương pháp giải:

Thay giá trị của m đã cho vào công thức hàm số sau đó khảo sát và vẽ đồ thị hàm số.

Lời giải chi tiết:

Với \(\displaystyle m = 2\) thì hàm số đã cho có phương trình là: \(\displaystyle y = {{2x - 1} \over {2x + 2}}\).

Tập xác đinh: \(\displaystyle D=\mathbb R\backslash {\rm{\{ }} - 1\} \)

* Sự biến thiên:

Ta có: \(\displaystyle y' = {2.2+2 \over {{{(2x + 2)}^2}}}={6 \over {{{(2x + 2)}^2}}} > 0\) \(\forall x \in D\)

- Hàm số đồng biến trên khoảng: \(\displaystyle (-\infty;-1)\) và \(\displaystyle (-1;+\infty)\)

- Cực trị:

   Hàm số không có cực trị.

- Tiệm cận:

   \(\displaystyle \eqalign{
& \mathop {\lim y}\limits_{x \to \pm \infty } = 1 \cr 
& \mathop {\lim y}\limits_{x \to - {1^ - }} = + \infty \cr 
& \mathop {\lim y}\limits_{x \to - {1^ + }} = - \infty \cr} \)

Tiệm cận đứng là \(\displaystyle x=-1\), tiệm cận ngang là: \(\displaystyle y=1\)

- Bảng biến thiên

* Đồ thị

Đồ thị hàm số giao \(\displaystyle Ox\) tại điểm \(\displaystyle ({1\over 2};0)\), giao \(\displaystyle Oy\) tại điểm \(\displaystyle (0;{-1\over 2})\).

Đồ thị hàm số nhận điểm \(\displaystyle I(-1;1)\) làm tâm đối xứng.

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved