Bài 6 trang 94 Tài liệu dạy – học Toán 9 tập 2

Đề bài

Cho tam giác ABC có ba cạnh a, b, c. Gọi S là diện tích và R là bán kính đường tròn ngoại tiếp, chứng minh công thức \(S = \dfrac{{abc}}{{4R}}\) .

Phương pháp giải - Xem chi tiết

+)Đặt \(AB = c;\,\,AC = b;\,\,BC = a\). Vẽ đường kính AD và \(AH \bot BC\,\,\left( {H \in BC} \right)\).

+) Chứng minh , từ đó tính AH theo a, b, c, R.

+) Sử dụng công thức tính diện tích \({S_{\Delta ABC}} = \dfrac{1}{2}AH.BC\).

Lời giải chi tiết

 

 

Đặt \(AB = c;\,\,AC = b;\,\,BC = a\). Vẽ đường kính AD và \(AH \bot BC\,\,\left( {H \in BC} \right)\).

Ta có \(\widehat {ACD}\) là góc nội tiếp chắn nửa đường tròn \( \Rightarrow \widehat {ACD} = {90^0}\).

Xét \(\Delta ABH\) và \(\Delta ADC\) có:

\(\widehat {AHB} = \widehat {ACD} = {90^0}\);

\(\widehat {ABH} = \widehat {ADC}\) (hai góc nội tiếp cùng chắn cung AC);

\( \Rightarrow \Delta ABH \sim \Delta ADC\,\,\left( {g.g} \right) \)

\(\Rightarrow \dfrac{{AH}}{{AC}} = \dfrac{{AB}}{{AD}}\)

\(\Rightarrow AH = \dfrac{{AB.AC}}{{AD}} = \dfrac{{bc}}{{2R}}\)

Khi đó ta có: \({S_{\Delta ABC}} = \dfrac{1}{2}AH.BC = \dfrac{1}{2}\dfrac{{bc}}{{2R}}.a = \dfrac{{abc}}{{4R}}\) (đpcm).

 

 
Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved