Bài 1. Tứ giác
Bài 2. Hình thang
Bài 3. Hình thang cân
Bài 4. Đường trung bình của tam giác, của hình thang
Bài 5. Dựng hình bằng thước và compa. Dựng hình thang
Bài 6. Đối xứng trục
Bài 7. Hình bình hành
Bài 8. Đối xứng tâm
Bài 9. Hình chữ nhật
Bài 10. Đường thẳng song song với một đường thẳng cho trước
Bài 11. Hình thoi
Bài 12. Hình vuông
Ôn tập chương I. Tứ giác
Đề kiểm tra 15 phút - Chương 1
Đề kiểm tra 45 phút (1 tiết) - Chương 1
Đề bài
Cho tam giác \(ABC\), đường cao \(AH\). Gọi \(I\) là trung điểm của \(AC, E\) là điểm đối xứng với \(H\) qua \(I\). Tứ giác \(AHCE\) là hình gì ? Vì sao ?
Phương pháp giải - Xem chi tiết
Áp dụng dấu hiệu nhận biết hình bình hành: Tứ giác có 2 đường chéo cắt nhau tại trung điểm của mỗi đường
Áp dụng dấu hiệu nhận biết hình chữ nhật: Hình bình hành có một góc vuông là hình chữ nhật.
Lời giải chi tiết
Theo giả thiết \(I\) là trung điểm của \(AC\) nên \(IA = IC\) (tính chất trung điểm)
Vì \(E\) là điểm đối xứng với \(H\) qua \(I\) (giả thiết) nên \(I\) là trung điểm của \(HE\) hay \(IE = IH\) (tính chất đối xứng)
Do đó, tứ giác \(AHCE\) có hai đường chéo \(AC, HE\) cắt nhau tại trung điểm \(I\) của mỗi đường nên \(AHCE\) là hình bình hành (dấu hiệu nhận biết hình bình hành)
Mặt khác \(AH\) là đường cao trong tam giác \(ABC\) nên \(\widehat{AHC}=90^0\)
Do đó \(AHCE\) là hình chữ nhật (dấu hiệu nhận biết hình chữ nhật).
Cách 2: Tứ giác \(AHCE\) có hai đường chéo \(AC, HE\) bằng nhau và cắt nhau tại trung điểm \(I\) của mỗi đường nên \(AHCE\) là hình chữ nhật
Bài 16
CHƯƠNG II. NHIỆT HỌC - VẬT LÍ 8
Presentation skills
Bài 10. Điều kiện tự nhiên khu vực Nam Á
Bài 7: Tích cực tham gia hoạt động chính trị - xã hội
SGK Toán 8 - Chân trời sáng tạo
SBT Toán 8 - Cánh Diều
Bài giảng ôn luyện kiến thức môn Toán lớp 8
SGK Toán 8 - Cánh Diều
VBT Toán 8 - Kết nối tri thức với cuộc sống
SBT Toán 8 - Kết nối tri thức với cuộc sống
SGK Toán 8 - Kết nối tri thức với cuộc sống
Tổng hợp Lí thuyết Toán 8
SBT Toán Lớp 8
Giải bài tập Toán Lớp 8
Tài liệu Dạy - học Toán Lớp 8
Đề thi, đề kiểm tra Toán Lớp 8