1. Nội dung câu hỏi
Đặt \({\log _2}5 = a,{\log _3}5 = b\). Khi đó, \({\log _6}5\) tính theo \(a\) và \(b\) bằng
A. \(\frac{{ab}}{{a + b}}\).
B. \(\frac{1}{{a + b}}\).
C. \({a^2} + {b^2}\).
D. \(a + b\).
2. Phương pháp giải
Sử dụng công thức lôgarit
3. Lời giải chi tiết
\({\log _6}5 = \frac{1}{{{{\log }_5}6}} = \frac{1}{{{{\log }_5}2 + {{\log }_5}3}} = \frac{1}{{\frac{1}{{{{\log }_2}5}} + \frac{1}{{{{\log }_3}5}}}} = \frac{1}{{\frac{1}{a} + \frac{1}{b}}} = \frac{1}{{\frac{{a + b}}{{ab}}}} = \frac{{ab}}{{a + b}}\)
Đáp án A.
Bài 10: Công thức phân tử hợp chất hữu cơ
Chương 6. Lịch sử bảo vệ chủ quyền, các quyền và lợi ích hợp pháp của Việt Nam ở Biển Đông
Review (Units 3 - 4)
Chủ đề 3. Thực hiện các hoạt động xây dựng và phát triển nhà trường
Đề thi giữa kì 2
SBT Toán Nâng cao Lớp 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Nâng cao Lớp 11
SGK Toán Lớp 11