1. Nội dung câu hỏi
Cho \(0 < a \ne 1\). Tính giá trị của biểu thức \(B = {\log _a}\left( {\frac{{{a^2} \cdot \sqrt[3]{a} \cdot \sqrt[5]{{{a^4}}}}}{{\sqrt[4]{a}}}} \right) + {a^{2{{\log }_a}\frac{{\sqrt {105} }}{{30}}}}\).
2. Phương pháp giải
Sử dụng công thức lũy thừa và lôgarit
3. Lời giải chi tiết
\(B = {\log _a}\left( {\frac{{{a^2} \cdot \sqrt[3]{a} \cdot \sqrt[5]{{{a^4}}}}}{{\sqrt[4]{a}}}} \right) + {a^{2{{\log }_a}\frac{{\sqrt {105} }}{{30}}}}\)
\( = {\log _a}\frac{{{a^2}.{a^{\frac{1}{3}}}.{a^{\frac{4}{5}}}}}{{{a^{\frac{1}{4}}}}} + {a^{{{\log }_a}{{\left( {\frac{{\sqrt {105} }}{{30}}} \right)}^2}}}\)
\( = {\log _a}\frac{{{a^{\frac{{47}}{{15}}}}}}{{{a^{\frac{1}{4}}}}} + {a^{{{\log }_a}\frac{7}{{60}}}} = {\log _a}{a^{\frac{{173}}{{60}}}} + {\left( {\frac{7}{60}} \right)^{{{\log }_a}a}}\)
\( = \frac{{173}}{{60}} + \frac{7}{60} = 3\)
Chương 3. Đại cương hóa học hữu cơ
Chương V. Công nghệ chăn nuôi
Chương 3: Điện trường
Chủ đề 1: Vai trò, tác dụng của môn bóng rổ; kĩ thuật di chuyển và kĩ thuật dẫn bóng
Chủ đề 7: Chiến thuật cá nhân
SBT Toán Nâng cao Lớp 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Nâng cao Lớp 11
SGK Toán Lớp 11