Bài 7 trang 100

Giải bài 7 trang 100 SGK Toán 10 tập 1 – Cánh diều

Đề bài

Chứng minh:

a) Nếu ABCD là hình bình hành thì \(\overrightarrow {AB}  + \overrightarrow {AD}  + \overrightarrow {CE}  = \overrightarrow {AE} \) với E là điểm bất kì.

b) Nếu I là trung điểm của đoạn thẳng AB thì \(\overrightarrow {MA}  + \overrightarrow {MB}  + 2\overrightarrow {IN}  = 2\overrightarrow {MN} \) với M, N là hai điểm bất kì.

c) Nếu G là trọng tâm của tam giác ABC thì \(\overrightarrow {MA}  + \overrightarrow {MB}  + \overrightarrow {MC}  - 3\overrightarrow {MN}  = 3\overrightarrow {NG} \) với M, N là hai điểm bất kì.

Phương pháp giải - Xem chi tiết

+) Quy tắc hình bình hành: \(\overrightarrow {AB}  + \overrightarrow {AD}  = \overrightarrow {AC} \)  nếu ABCD là hình bình hành.

+) Nếu I là trung điểm của đoạn thẳng AB thì \(\overrightarrow {MA}  + \overrightarrow {MB}  = 2\overrightarrow {MI} \) với M bất kì.

+) Nếu G là trọng tâm của tam giác ABC thì  với M bất kì.

Lời giải chi tiết

a) Nếu ABCD là hình bình hành thì \(\overrightarrow {AB}  + \overrightarrow {AD}  = \overrightarrow {AC} \)

Với E là điểm bất kì, ta có: \(\overrightarrow {AB}  + \overrightarrow {AD}  + \overrightarrow {CE}  = \overrightarrow {AC}  + \overrightarrow {CE}  = \overrightarrow {AE} \)

b) Nếu I là trung điểm của đoạn thẳng AB thì \(\overrightarrow {MA}  + \overrightarrow {MB}  = 2\overrightarrow {MI} \).

Với hai điểm bất kì M, N ta có:

 \(\overrightarrow {MA}  + \overrightarrow {MB}  + 2\overrightarrow {IN}  = 2\overrightarrow {MI}  + 2\overrightarrow {IN}  = 2\left( {\overrightarrow {MI}  + \overrightarrow {IN} } \right) = 2\overrightarrow {MN} .\)

c) Nếu G là trọng tâm của tam giác ABC thì \(\overrightarrow {MA}  + \overrightarrow {MB}  + \overrightarrow {MC}  = 3\overrightarrow {MG} \)

Với hai điểm bất kì M, N ta có:

\(\overrightarrow {MA}  + \overrightarrow {MB}  + \overrightarrow {MC}  - 3\overrightarrow {MN}  = 3\overrightarrow {MG}  - 3\overrightarrow {MN}  = 3\left( {\overrightarrow {MG}  - \overrightarrow {MN} } \right) = 3\overrightarrow {NG} \).

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved