Bài 1. Đại cương về đường thẳng và mặt phẳng
Bài 2. Hai đường thẳng chéo nhau và hai đường thẳng song song
Bài 3. Đường thẳng và mặt phẳng song song
Bài 4. Hai mặt phẳng song song
Bài 5. Phép chiếu song song. Hình biểu diễn của một hình không gian
Ôn tập chương II. Đường thẳng và mặt phẳng trong không gian. Quan hệ song song
Đề bài
Cho hình hộp chữ nhật \(ABCD.A'B'C'D'\) có \(AB = a, BC = b, CC' = c\).
a) Chứng minh rằng mặt phẳng \((ADC'B')\) vuông góc với mặt phẳng \((ABB'A')\).
b) Tính độ dài đường chéo \(AC'\) theo \(a, b, c\).
Phương pháp giải - Xem chi tiết
a) Chứng minh \(DA \bot \left( {ABB'A'} \right)\)
b) Sử dụng định lí Pytago.
Lời giải chi tiết
a) Ta có:
\(\left\{ \begin{array}{l}
DA \bot AA'\\
DA \bot AB
\end{array} \right. \Rightarrow DA \bot \left( {ABB'A'} \right)\)
Mà \(DA ⊂ (ADC'B')\)
\(\Rightarrow (ADC'B') \bot(ABB'A')\).
b)
\(\left\{ \begin{array}{l}
C'C \bot CD\\
C'C \bot CB
\end{array} \right. \Rightarrow C'C \bot \left( {ABCD} \right)\)
Mà \(CA \subset \left( {ABCD} \right) \Rightarrow C'C \bot CA\) hay tam giác \(ACC'\) vuông tại \(C\).
Xét tam giác vuông \(ACC'\)
\(AC' = \sqrt {A{C^2} + CC{'^2}} \) \(= \sqrt {A{D^2} + D{C^2} + CC{'^2}}\)
\(=\sqrt{a^{2}+b^{2}+c^{2}}.\)
Ghi nhớ: Hai mặt phẳng vuông góc với nhau khi mặt này chứa một đường thẳng vuông góc với mặt kia.
Bài 1. Bảo vệ chủ quyền lãnh thổ, biên giới quốc gia nước Cộng hòa xã hội chủ nghĩa Việt Nam
Chương 3. Đại cương hóa học hữu cơ
Chuyên đề 2: Một số vấn đề về pháp luật dân sự
Unit 3: Global warming & Ecological systems
Tải 10 đề kiểm tra 45 phút (1 tiết) - Chương IV - Hóa học 11
SBT Toán Nâng cao Lớp 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Nâng cao Lớp 11