Đề bài
Cho hình chóp tam giác \(S.ABC\) có \(AB = 5a, BC = 6a, CA = 7a\). Các mặt bên \(SAB, SBC, SCA\) tạo với đáy một góc \(60^0\). Tính thể tích của khối chóp đó.
Phương pháp giải - Xem chi tiết
Hình chóp có các cạnh bên tạo với đáy các góc bằng nhau có hình chiếu của đỉnh trùng với tâm đường tròn nội tiếp đáy.
Áp dụng công thức tính thể tích \({V_{chóp}} = \dfrac{1}{3}Sh\) trong đó \(S\) là diện tích đáy và \(h\) là chiều cao của khối chóp.
Lời giải chi tiết
Kẻ \(SH \bot (ABC)\) và từ \(H\) kẻ \(HI \bot AB, HJ \bot BC, HK \bot CA\).
Từ định lý ba đường vuông góc, ta suy ra:
\(SI \bot AB, SJ \bot BC, SK \bot AC\) do đó:
+) Góc giữa hai mặt phẳng \(\left( {SAB} \right)\) và \(\left( {ABC} \right)\) là \( \widehat {SIH} = {60^0}\)
+) Góc giữa hai mặt phẳng \(\left( {SBC} \right)\) và \(\left( {ABC} \right)\) là \( \widehat {SJH} = {60^0}\)
+) Góc giữa hai mặt phẳng \(\left( {SAC} \right)\) và \(\left( {ABC} \right)\) là \( \widehat {SKH} = {60^0}\)
Từ đây ta có: \(△SIH = △SJH = △SKH\) (c.g.v.g.n)
\( \Rightarrow IH = JH = KH\)
\( \Rightarrow H\) là tâm đường tròn nội tiếp \(△ABC\).
Tam giác \(ABC\) có chu vi: \(2p = AB + BC + CA = 18a \Rightarrow p = 9a\)
Theo công thức Hê-rông, ta có: \({S_{ABC}} = \sqrt {p\left( {p - AB} \right)\left( {p - AC} \right)\left( {p - BC} \right)}\) \( = \sqrt {9a.4a.2a.3a} = 6{a^2}\sqrt 6 \)
Bán kính của đường tròn nội tiếp tam giác \(ABC\):
\(IH = r = \displaystyle{{{S_{ABC}}} \over p} = {{6{a^2}\sqrt 6 } \over {9a}} \Rightarrow IH = {{2a\sqrt 6 } \over 3}\)
Xét tam giác vuông SHI có: \(SH = r . \tan 60^0\) = \(\displaystyle{{2a\sqrt 6 } \over 3}.\sqrt 3 = 2a\sqrt 2 \)
Vậy thể tích khối chóp: \({V_{S.ABC}} = \displaystyle{1 \over 3}.2a\sqrt 2 .6{a^2}\sqrt 6 = 8{a^3}\sqrt 3 \)
Luyện đề đọc hiểu - THCS
CHƯƠNG I. KHÁI NIỆM VỀ HỆ CƠ SỞ DỮ LIỆU
Chương 3. Di truyền học quần thể
SBT tiếng Anh 12 mới tập 2
ĐỀ THI HỌC KÌ 2 MỚI NHẤT CÓ LỜI GIẢI